\square
Code: 7G231

|| B.Tech. I Semester Supplementary Examinations November 2020

DC Machines

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Elaborate the significance of equalizer rings and dummy coils.

8M
b) A series generator having a combined armature and field resistance of 0.4 is running at $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and delivering 5.5 kW at a terminal voltage of 110 V . If the speed is raised to 1500 r.p.m. and the load is adjusted to 10 kW , find the new current and terminal voltage. Assume that the machine is working on the straight line portion of the magnetization characteristic.

OR

2. a) Explain the principle of operation of DC generator and thereby encapsulate the various parts of DC machine and the material suitable for the respective part of the machine.
b) Bring out the differences between lap and wave windings.

UNIT-II

3. a) With the help of neat sketches, explain the phenomenon of commutation in DC machines. State and discuss the methods adopted for minimizing sparking at the brushes.
b) A separately excited DC generator when running at 1000 rpm supply 200A at 125 V . What will be the load current when the speed drops to 800 rpm if field is unchanged? Given that the armature resistance $=0.04$ ohms and brush drop $=2 \mathrm{~V}$.

OR

4. a) Derive the condition for maximum efficiency of a DC generator.
b) What is Armature Reaction and what are its adverse effects on the operation of a DC machine? Also, derive the expressions for de-magnetizing and crossmagnetizing ATs per pole in case the brushes are given a lead of θ degrees from GNA in case of generator.

UNIT-III

5. a) Explain the voltage build-up process in DC shunt generators. Also, explain the various possible reasons for failure of voltage build-up process.
b) Illustrate the external characteristics of shunt, series and compound generators and thereby list out the applications of each.

OR

6. a) "A self excited DC shunt generator has drooping characteristic". Explain. Even though the characteristic is drooping, it is used for constant voltage applications. Why? 6Mb) Two shunt generators are operating in parallel. The e.m.f. induced in one ofthe machine is 260 V and that induced in the other machine is 270 V . Theysupply together a load current of 1800A. If each machine has an internalresistance of 0.04 and field resistance of 50 , determine i) terminalvoltage and ii) output of each machine.8M

UNIT-IV

7. a) On what factors does the speed of DC motor depend? Describe the method of controlling the speed of a DC shunt motor for obtaining the speeds above base speed.
b) Illustrate the significance of a starter. Bring out the significance of protective
devices used in a starter.

6M

OR

8. a) A 440 V DC shunt motor takes 4 A at no-load. Its armature and field resistances are 0.4 and 220 respectively. Estimate the kW output and efficiency when the machine takes 60 A on full-load. Find also the percentage change in speed from no-load to full-load.
b) Explain the self-relieving property of DC motors.

UNIT-V
9. a) Under what circumstances the Swinburne's test is preferred over other methods of testing DC machines.
b) Hopkinson's test was conducted on two shunt motors. The supply current was 15 A at 200 V . The generator output current was 85 A . The field currents of motor and generator were 2.5A and 3A respectively. The armature resistance of each machine was 0.05 . Find the efficiency of each machine under the above loading conditions.

OR

10. a) What is the necessity of testing DC machines? Elaborate on the method of testing preferred in the kind of situations.
b) Describe the method of testing large Series machines. Bring out the advantages and disadvantages of the test.

II B.Tech. I Semester Supplementary Examinations November 2020
Engineering Mathematics - III
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find a root of the equation $x^{3}-x-11=0$ by using Bisection method.
b) Find a root of the equation $3 x=\cos x+1$ by Newton-Raphson method, correct to three decimal places.

OR

2. a) Apply Euler's method to solve for y when $x=0.6$ given that $y^{\prime}=1-2 x y, y(0)=0$.
b) Using Runge-Kutta method of order 4, compute $y(0.2)$ from

$$
10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1, h=0.1 .
$$

UNIT-II

3. a) Find the missing term in the following table using Lagrange's interpolation

x	1	2	4	5	6
y	14	15	5	-	9

b) From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of Students	31	42	51	35	31
OR					

4. a) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$, by using Trapezoidal rule with $h=0.2$. Hence determine the value of π.
b) Compute the value of $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ using Simpson's $3 / 8{ }^{\text {th }}$ rule.

UNIT-III

5. a) Find the least squares fit of the form $y=a_{0}+a_{1} x^{2}$ to the following data

x	-1	0	1	2
y	2	5	3	0

b) Solve : $x p-y q=y^{2}-x^{2}$.

OR

6. a) Fit a curve of the form $y=a e^{b x}$ to the following data.

x	0	1	2	3
y	1.05	2.10	3.85	8.30

b) Using method of separation of variables, Solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$, given that $u(0, y)=8 e^{-3 y}$.

UNIT-IV

7. a) If $f(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x, & 0<x<\pi .\end{array}\right.$
then show that $f(x)=\frac{\pi}{2}-\frac{4}{\pi}\left[\frac{1}{1^{2}} \cos x+\frac{1}{3^{2}} \cos 3 x+\frac{1}{5^{2}} \cos 5 x+\cdots\right]$.
b) Find a Fourier series to represent $f(x)=|\sin x|$ in the interval $-\pi<x<\pi$.

OR

8. a) Obtain the half range sine series for e^{x} in $0<x<1$.
b) Find the Half range cosine series for the function $f(x)=(x-1)^{2}$ in the interval $0<x<1$.

UNIT-V

9. a) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x|<1 \\ 0 & \text { for }|x|>1 .\end{array}\right.$ Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
b) Find the Fourier Cosine transform of $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & x>2\end{array}\right.$.

OR

10. a) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$.
b) Show that the inverse finite Fourier sine transform of $F_{s}(n)=\frac{1}{\pi}\left\{1+\cos n \pi-2 \cos \frac{n \pi}{2}\right\}$ is

$$
f(x)=\left\{\begin{array}{cc}
1, & 0<x<\pi / 2 \\
-1, & \pi / 2<x<\pi
\end{array} .\right.
$$

\square
Hall Ticket Number :

Code: 7G536

II B.Tech. I Semester Supplementary Examinations November 2020

Fluid Mechanics and Hydraulic Machines

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) *********

UNIT-I

1. a) Define the terms: (i) absolute pressure (ii) Gauge Pressure (iii) vacuum pressure
b) A triangular plate of base width 1.5 m and height 2 m lies immersed in water with the apex downwards. The base of the plate is 1 m below and parallel to the free water surface. Calculate the total pressure on the plate and the depth of the center of pressure

OR

2. a) Calculate the shear stress developed in oil of viscosity 1.4 poise, used for lubricating the clearance between a shaft of diameter 15 cm and its journal bearing. The shaft rotates at 175 rpm and clearance is 1.5 mm .
b) A fan delivers $4 \mathrm{~m}^{3}$ of air per second at $20^{\circ} \mathrm{C}$ and 1.25 bar. Assuming molecular weight of air as 28.97, calculate the mass of air delivered. Also determine the density, specific volume and specific weight of the air being delivered

UNIT-II

3. a) Explain (i) Stream line (ii) vorticity (iii) Irrotational Flow (iv) Streak line 4M
b) Derive the Bernoulli's equation from the Euler's equation.

OR

4. a) Explain Hydraulic Gradient Line and Total Energy Line
b) Pipe of 0.6 m diameter is 1.5 km long. In order to augment the discharge, another pipe of the same dia is introduced parallel to the first in the secondhalf of the length. Neglecting minor losses, find increase in discharge if friction factor is 0.04 . Assume a level difference of 30 m at inlet \& outlet of the pipe.

UNIT-III

5. a) Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet.
b) jet of water of diameter 60 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between the jet and the plate is 550 . Find the force exerted by the jet on the plate (i) in the direction normal to the plate, and (ii) in the direction of the jet.
6. a) State the momentum equation; In what way does it differ from impulse momentum equation. Mention some of its engineering applications.
b) A venturimeter of $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ size is calibrated in a laboratory using a right angled V notch. When a steady head of 0.187 m is maintained over the notch with a coefficient of discharge 0.6, the difference of head between he entrance and throat section of the Venturimeter is found to be 39 cm head of the fluid measured using notch as actual flow, determine the discharge coefficient of venturimeter.

UNIT-IV

7. a) Show that for the maximum efficiency, the bucket speed of a pelton wheel should be equal to one half of the jet speed.
b) A hydraulic turbine under a head of 25 metres develops 7260 kW running at 110 rpm . What is the specific speed of the turbine? What type of turbine is this? Find also the normal speed and output if the head on the turbine is reduced to 20 metres.
\square

Code: 7G232

II B.Tech. I Semester Supplementary Examinations November 2020

Switching Theory and Logic Design

(Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain error correction and error detection codes with examples?
b) Distinguish between weighted and non-weighted codes with examples.
c) What is the advantage of 2's complement representation in computers? Perform the following operations using 2's complement method:
i. $(+55)-(+15)$
ii. $(-55)-(-15)$

OR

2. a) i. Write the properties of $X O R$ gate.
ii. Prove the Boolean identity $\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$.
b) Simplify the following Boolean functions to minimum number of literals.
i. $x y z+x 1 y+x y z 1$
ii. $x z+x 1 y z$

UNIT-II

3. a) Prove that AND-OR network is equivalent to NAND-NAND network.
b) Develop a circuit for each of the following Boolean expression using only NAND gates
i. $Y=(A+C)(B+D)$
ii. $Y=A B(C+D)$

OR

4. a) Simplify the following Boolean function for minimal POS form using K-map and implement Using NOR gates.
$F(W, X, Y, Z)=\Sigma(1,2,5,6,9)+d(10,11,12,13,14,15)$
b) Simplify $F=\Sigma m(0,1,4,5,6,9,11,12,13,14,15)+\Sigma d(7,8)$ using tabular method and implement using NOR gates only

UNIT-III
5. a) What is magnitude comparator? Explain with circuit diagram a 1 bit magnitude comparator
b) Design 4×16 decoder using two 3×8 decoders with block diagram.
6. a) Implement the following function $F(A, B, C, D)=\sum m(0,1,3,4,7,10,12,14)$ using 16:1 MUX and 8:1 MUX.
b) Implement the following expressions using PROM $F 1=\Sigma m(0,1,2,4,6,7), F 2=\Sigma m(0,1,2,4,6$,

UNIT-IV

7. a) Show how mod-12 JK counter could be built using mod-3 \& mod-4 counters.
b) Draw the circuit diagram of 4 bit ring counter using D Flip-Flops and explain its operation with the help of bit pattern

OR

8. a) Convert SR-Flip-Flop into JK-Flip-Flop.
b) What do you mean by triggering? Explain the various triggering modes with examples.

UNIT-V

9. a) A Sequential circuit has 2 inputs $W_{1}=W_{2}$ and an output Z. Its function is to compare the input sequence on the two inputs. If $\mathrm{W}_{1}=\mathrm{W}_{2}$ during any four consecutive clock cycles, the circuit produces $Z=1$ otherwise $Z=0$.
$\mathrm{W}_{1}=0110111000110 \mathrm{~W}_{2}=1110101000111 \mathrm{Z}=0000100001110$
b) What are the Moore and Melay machines? Compare them?
c) What are the limitations of FSM

OR

10. a) Construct an ASM block that has 3 input variable (A, B, C), 4 output variables (W, X, Y, Z) and 2 exit paths. For this block, output Z is always 1 and W is 1 . If A and B both are 1 , If $C=1$ and $A=0, Y=1$ and exit path 1 is taken. If $\mathrm{C}=0$ or $\mathrm{A}=1, \mathrm{X}=1$ and exit path2 is taken, Realize the as one using PLA control and give the PLA table
b) Draw the state diagram for a full adder circuit and convert it to ASM chart.

Hall Ticket Number :

Code: 7G334

R-17

II B.Tech. I Semester Supplementary Examinations November 2020

Analog Electronics-I

(Electrical and Electronics Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw the small signal model of $B J T$ in $C E, C C$ and $C B$ configurations using h-parameters.
b) Distinguish between Exact and approximate models of BJT using h-parameters.

OR

2. Derive the expressions of current gain, voltage gain, input and output resistances, overall input and output resistances of CC amplifier using simplified model.

UNIT-II

3. a) List out the Classification of feedback amplifiers
b) Derive the expression for transfer gain with feedback?

OR
4. a) Derive the expressions for input impedance, output impedance for current series feedback.
b) Explain the advantages of negative feedback over positive feedback 7M
UNIT-III
5. a) Write short notes on Frequency stability of oscillators 7M
b) Discuss about amplitude stability of oscillators.

OR

6. a) What is Barkhausen criteria for oscillations.
b) Discuss about Hartley oscillator with the help of circuit diagram.

> UNIT-IV
7. a) List out classification of Power Amplifiers.
b) Derive the expression for efficiency of series fed Class A power amplifier

OR

8. a) Explain class A power amplifier working with neat sketches and derive the expression for conversion efficiency.
b) Discuss about class B push-pull amplifier operation with neat diagrams and derive the expression for collector circuit efficiency
UNIT-V
9. a) Define Non-linear wave shaping? Write short notes diode clippers.
b) Discuss about transistor clippers.

OR

10. a) In a low pass $R C$ circuit, $R=2 k$ and $C=1 F$ is applied as exponential input, and then
determine the output wave form.
b) Explain the operation of two level slicer.
