Hall Ticket Number :

\square
Code: 7G334
R-17
II B.Tech. I Semester Supplementary Examinations November 2023
Analog Electronics - I
(Electrical and Electronics Engineering)
Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I1. Draw and discuss the Frequency response of RC Coupled, Direct coupled andTransformer coupled amplifiers with relevant diagrams.14M
OR2. a) Distinguish between Exact and approximate models of BJT using h-parameters.5M
b) State and prove millers theorem. Explain its significance in transistor circuit analysis. 9M
UNIT-II3. a) Derive the expression for transfer gain with feedback?7M
b) What is Sampling. Explain about it with neat diagrams. 7M
OR4. a) An amplifier has an open loop gain 1000 and a feedback ratio of 0.04 . if the open loopgain changed by 10% due to temperature, then find the percentage change in gain ofthe amplifier with feedback.7M
b) Derive the expressions for input impedance, output impedance for current series feedback. 7M
UNIT-III
5. a) Explain about the crystal oscillators and mention their advantages 7M
b) Write short notes on Frequency stability of oscillators 7M
OR
6. a) Discuss about Hartley oscillator with the help of circuit diagram. 10M
b) Determine the Resistance of RC phase shift oscillator for operation at fo $=10 \mathrm{KHz}, \mathrm{K}=45$ and $\mathrm{C}=2 \mathrm{pF}$. 4M
UNIT-IV
7. a) Write short notes on Class-A direct coupled Class-A power amplifier. 7M
b) Explain class A power amplifier working with neat sketches and derive the expression for conversion efficiency. 7M
OR
8. a) Derive the expression for efficiency in class B amplifier 7M
b) What is the Max power dissipation per each transistor and derive the expression for it. 7M
UNIT-V
9. a) What is RC low-pass circuit? What is meant by ringing circuit?7M
b) Explain the RC Integrator with Exponential input. 7M
OR
10. a) Discuss about transistor clippers. 7M
b) State and prove clamping circuit theorem. 7M

Code: 7GC32

R-17
II B.Tech. I Semester Supplementary Examinations November 2023

Engineering Mathematics-III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks

UNIT-I

1. a) Find the real root of equation $x^{3}-x-11=0$ by bisection method.
b) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y$; $y(0)=1$.

OR

2. Using R-K method of $4^{\text {th }}$ order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$. Find $y(0.2), y(0.4)$.

UNIT-II

3. a) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

b) Evaluate $f(10)$ given $f(x)=168,192,336$ at $x=1,7,15$ respectively. Use Lagrange interpolation.
4. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines $x=0$ and $x=1$ and a curve through the points with the following co-ordinates:

x	0.00	0.25	0.5	0.75	1.00
y	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the soli formed using Simpsons rule.

UNIT-III

5. a) Form the partial differential equation by eliminating the arbitrary constants

$$
x^{2}+y^{2}+(z-c)^{2}=a^{2}
$$

b) Fit a second degree parabola to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21

OR
6. a) Fit a straight line $y=a+b x$ to the data by the method of least squares

x	0	1	3	6	8
y	1	3	2	5	4

b) Form the partial differential equation by eliminating a, b from $z=a x+b y+a^{2}+b^{2}$

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=\pi-x$ in $0<x<2 \pi \quad 7 \mathrm{M}$
b) Expand $f(x)=\cos x, 0<x<\pi$ in half range sine series. 7M

OR

8. Express $f(x)=x$ as half range sine and cosine in $0<x<2$

UNIT-V

9. a) Find the Fourier sin and cosine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$
b) Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.

OR

10. Find the Fourier transform of $f(x)=\left\{\begin{array}{c}1-x^{2},|x| \leq 1 \\ 0,|x| \geq 1\end{array}\right.$.

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

