Hall Ticket Number :	R-1	7	
Line Code: 7G534 II B.Tech. I Semester Supplementary Examinations February	າດາາ		4
Manufacturing Technology	ZUZZ		
(Mechanical Engineering)			
	ime: 3	Hours	
Answer any five full questions by choosing one question from each unit (5x14	4 = 70 N	/arks)	
<u> </u>			Blo
	Marks	CO	Le
UNIT–I			
Draw the sketches of Risers, Runner and Gating system in the castings.	14M		
OR			
Classify the types of pattern allowances with neat sketches.	14M		
UNIT–II State the advantages and limitation of TIG and MIG welding	14M		
Or OR	1411		
Explain Soldering and brazing with neat sketch and mention its uses	14M		
UNIT–III			
Define the term Bending? Explain types of Bending with neat sketches.	14M		
OR			
Explain the defects in Rolled products with neat sketches	14M		
UNIT-IV			
Define the stages of Drop forging with practical example	14M		
OR Describe tools and discussed in family with most clustely a	4 4 4 4		
Describe tools and dies used in forging with neat sketches	14M		
UNIT–V			
Explain the working principle of blow and injection moulding with neat			
sketch?	14M		
OR			
Explain the working of Extrusion process and mention its uses and			
limitations.	14M		

	Н	all Ticket Number :	
		R-17	
	Co	Il B.Tech. I Semester Supplementary Examinations February 2022 Basic Thermodynamics (Mechanical Engineering)	J
		Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
		UNIT–I	Marks
1.	a)	Write short notes on (i) Zeroth law of Thermodynamics. (ii) First law of Thermodynamics.	8M
	b)	Prove that Internal energy is a property of the system.	6M
0		OR	
2.		A stationary mass of gas is compressed without friction from an initial state of 0.3m ³ and 0.105MPa to a final state of 0.15m ³ and 0.105MPa. There is a transfer of 37.6KJ of heat from the gas during the process. How much does the internal energy of the gas change?	14M
3.	a)	A reversible heat engine operates between a source at 800°C and sink at 30°C. What is the	
		least rate of heat rejection per KW network output of the engine?	7M
	b)	Bring out the concept of entropy and importance of T-s diagram.	7M
4	c)	OR	1014
4.	a) b)	Derive an expression for Clausius inequality and explain its utility.	10M 4M
	b)	Write a short notes on Third law of Thermodynamics	4171
5.	a)	Steam enters in an engine at a pressure of 10 bar absolute and 250°C. It is exhausted at 0.2 bar. The steam exhaust is 0.9dry. Find i) drop in enthalpy ii) Change in entropy	8M
	b)	Explain the concept of Triple point.	6M
		OR	
6.	a)	Derive an expression for Clausius Clapeyron equation applicable to fusion and Vaporization.	10M
	b)	What is a pure substance?	4M
		UNIT-IV	
7.	a)	A spherical shaped balloon of 10 m diameter contains hydrogen at 33 °C and 1.3 bar. Find the mass of hydrogen in the balloon.	5M
	b)	0.3 m^3 of air at pressure 8 bar expands to 1.5 m^3 . The final pressure is 1.3 bar. Assuming the expansion to be polytropic. Calculate the heat supplied and change of internal energy. Assume =1.4	9M
		OR	e
8.	a)	Explain Vander wall's equation of state and derive the constants for the equation	10M
	b)	What is the significance of Vanderwaal's constants : a & b.	4M
		UNIT-V	
9.	a)	Write a short note on the Gravimetric Analysis.	7M
	b)	Briefly discuss about the Volumetric Analysis.	7M
		OR	
10.	a)	The following volumetric composition relate to a mixture of gases: - $N_2 = 81\%$, $CO_2=11\%$, $O_2 = 6\%$, $CO = 2\%$ Determine i) the gravimetric composition.ii) Molecular weight and iii) gas constant R for the mixture.	10M
	b)	Establish the relation between mass fraction and mole fraction	4M

Hall Ticket Number :

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations February 2022

Engineering Mathematics-III

(Common to All Branches)

Max. Marks: 70

- 1. a) Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, y(0) = 1 determine y(0.1) correct to four decimal places.
 - b) Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places. 7M

OR

2. Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places.

3. a) Using Newton's forward interpolation formula and the given table of values

Х	1.1	1.3	1.5	1.7	1.9
F(x)	0.21	0.69	1.25	1.89	2.61
	41 1			4.0	

Obtain the value of f(x) when x = 1.2

b) Find the first and second derivatives of the function tabulated below at the point x = 1.5

Х	1.5	2.0	2.5	3.0	3.5	4.0	
У	3.375	7.0	13.625	24.0	38.875	59.0	
OR							

7M

14M

4. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
У	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x=6

UNIT-III

5. Form the partial differential equation by eliminating the arbitrary constants $x^2 + y^2 + (z-c)^2 = a^2$ 14M

7M

Time: 3 Hours

R-17

7M

6. a) Form a partial differential equation by eliminating the arbitrary functions from z = f(x+at) + g(x-at). 7M

b) Solve
$$(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$$
 7M

UNIT-IV 7. a) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$ 7M

b) Find the half range cosine series for the function $f(t) = t - t^2$, in 0 < t < 1 7M

OR

8. a) Find the Fourier series to represent f(x) = |x| when -f < x < f and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 7M

b) Find the half range cosine series for the function f(x) = x, when

$$0 < x < f_{\text{hence show that } \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}}$$
UNIT-V

9. a) Find the Fourier cosine transform of $f(x) = e^{-ax} (x > 0, a > 0)$. 7M

- b) Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, for |x| < 1 \\ 0, for |x| > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ OR OR 7M
- 10. Find the finite Fourier sine and cosine transforms of f(x) defined by

$$f(x) = \begin{cases} 1, 0 < x < \frac{f}{2} \\ -1, \frac{f}{2} < x < f \end{cases}$$
14M

~	Hall Ticket Number :	R-1	7	
C	ode: 7G532 II B.Tech. I Semester Supplementary Examinations February	, 2022		
	Metallurgy and Material Science	ZUZZ		
	(Mechanical Engineering)			
-		ime: 3		
A	Answer any five full questions by choosing one question from each unit (5x1-	4 = 70 N	∧arks)	
		Marks	со	Blo
	UNIT–I			L
	Define Solid Solution. Classify and explain types of solid solutions with neat			
•	sketches	14M		
	OR			
	State and explain Hume Rothery's rules for the formation of Substitutional			
	solid solution.	14M		
	UNIT–II			
•	Explain the phase diagram for "Two components completely soluble in	4 4 4 4		
	Liquid state and completely soluble in solid state" OR	14M		
	Draw the phase diagram for "Two components completely soluble in Liquid			
•	state and partially soluble in solid state" and briefly explain it.	14M		
	UNIT–III			
. a)	Briefly explain the characteristics of cast irons	7M		
b)	Classify Cast Irons Explain any one of them	7M		
	OR			
. a)	Explain the microstructure, properties and applications of Grey cast iron	7M		
b)	Discuss about malleable cast iron mentioning its properties and applications			
		7M		
		,		
•	Describe the steps involved in construction of TTT diagram	14M		
	OR			
	Outline the principle of Induction hardening. How is induction hardening carried out. Also mention its advantages and disadvantages.	14M		
	carried but. Also mention its advantages and disadvantages.	14101		
	UNIT-V			
	Write about the Bessemer process of steel making with a neat sketch	14M		
	OR			
. a)	Differentiate between acidic and basic OH process	7M		
b)	Define powder metallurgy process and applications of powder metallurgy	7M		