Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code: 7G533

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations March 2021

Basic Thermodynamics

(Mechanical Engineering)

Time: 3 Hours

R-17

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

- 1. a) Discuss about Macroscopic and Microscopic view point of Thermodynamics.
 - b) What is meant by displacement work? Explain the same with reference to the Quasi-static process.

OR

2. To a closed system 150 KJ of work is supplied. If the initial volume is 0.6 m³ and the pressure of the system changes as p=8 - 4V where p is in bar and V is in m³, determine the final volume and pressure of the system.

UNIT-II

- 3. a) Write short notes on Second law of Thermodynamics.
 - b) An inventor claims to develop an engine which absorbs 100KW of heat from a reservoir at 1000K produces 60 kW of work and rejects heat to a reservoir at 500 K. Will u advise investment in its development?

OR

4. Three Carnot Heat Engines HE1, HE2, HE3 are connected in series. They are working with same thermal efficiency. The heat supplied to the entire system is2400 kW and heat rejected from entire system is 300 kW Calculate work done for each engine.

UNIT-III

- 5. a) Draw and explain P-T diagram for pure substance
 - b) Find the specific volume, enthalpy, entropy and internal energy of wet steam at 18 bar, dryness fraction 0.85

OR

1 kg of steam initially dry saturated at 1.1 MPa expands in a cylinder following the law pV^{1.13} = c. The pressure at the end of expansion is 0.1 MPa. Determine i) Final volume ii) Final dryness fraction iii) Work done iv) Change in internal energy v) Heat transferred.

UNIT-IV

- 7. a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
 - b) Explain Throttling process and Free expansion process.

OR

8. 1.5 kg of air at pressure 6 bar occupies a volume of 0.2 m³. If this air is expanded to a volume of 1.1 m³. Find the work done and heat absorbed or rejected by the air for each of the following methods.
(i) Isothermal process (ii) Adiabatic process (iii) Polytropic process.

UNIT–V

9. The volumetric analysis of a dry flue gas in a boiler trail is given in percentage as 13% CO₂, 1.5% CO ,3.5% O₂ and 82% N₂. Determine the percentage gravimetric analysis also find the specific gas constant of the mixture

OR

- 10. a) A gas mixture consists of 7kg nitrogen and 2kg oxygen, at 4 bar and 27°C. Calculate the mole fraction, partial pressure, molar mass, gas constant, volume and density.
 - b) State Avogadro's law of Additive volumes.

	Hal	I Ticket Number :										_		
	Coc	le: 7GC32					[R-17	
		II B.Tech. I Se	mester	Sup	pler	nent	tary	Exa	min	ation	is Feb	rua	ry 2021	
Engineering Mathematics-III														
(Common to All Branches) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) *********														
UNIT–I														
1.	a)	Find the real root of	f equatio	$1x^3$	x - 1	l=0b	y bis	ectio	n me	thod.				7M
	b) Using Taylor's series method, compute the value of y at x=0.2 from $\frac{dy}{dx} = x + y$;													
		y(0)=1.												7M
2			_			OI				_				
2.	a)	Find a real root of to four decimal place	•	tion 3	bx =	cos	x + 1	by N	ewto	n-Rap	hson's	met	hod correct	7M
	b)	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ v	vith initial	condit	tion y	y = 1 a	x =	0.Fii	nd y f	or x =	0.1 by	Eule	r's method.	7M
UNIT-II														
3.	a)	Using Newton's for	1	-					-		1			
		x F(x)	1.1 0.2		1. 0.6			.5 25		1.7 .89	1.9 2.6			
		Obtain the value of				55	1	20	·	.00	2.0	•		7M
	b)	Find the first and se	. ,			the f	unctio	on tal	oulat	ed bel	ow at tl	ne po	pint x = 1.5	
		X	1.5	2	.0	2.	5	3.0)	3.5	4	.0		
		У	3.375	7	.0	13.6		24.	0	38.87	5 59	0.0		7M
4.	a)	Evaluate f(10) give interpolation.						= 1, 7	' , 15	respe	ectively	. Use	e Lagrange	7M
	b)	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$	by Simp	son's	1/3 ru	ule.								7M
					U	NIT-II								
5.	a)	By the method of le	ast squa	res, fii	nd th					est fits	the fol	lowir	ng data.	
			>	(14	2	3	4	5					714
	b)	Form the partial	differer			27 tion	40 bv	55 elimii	68 natin		e arbit	rarv	constants	7M
	0)	$x^{2} + y^{2} + (z - c)^{2} =$			oquu		^o y	O	latin	g the		rary	conotanto	714
						O	R							7M
6.	a)	Form the partial or arbitrary functions)		,		ns (b	y elir		ing t	the ar	bitrary	con	stants and	7M
	b)	Solve $p \tan x + q \tan x$,								7M
	·													

Code: 7GC32

- UNIT-IV 7. a) Find the Fourier series expansion for f(x) = f - x in 0 < x < f7M b) Expand $f(x) = \cos x, 0 < x < f$ in half range sine series. 7M OR Determine the Fourier series for $f(x) = x \sin x$ in the interval 0 < x < 2f8. 14M UNIT-V a) Find the finite Fourier sine and cosine Transforms of f(x) defined by f(x) = 1 where 9. 0 < x < f7M
 - b) Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$
- Find the Fourier cosine transform of $f(x) = \frac{1}{1+r^2}$, hence, derive the Fourier sine 10.

transf 1+x

form of w(x) =
$$\frac{x}{1+x^2}$$

OR

14M

7M

	Hall Ticket Number :	7
	Code: 7G534	
	II B.Tech. I Semester Supplementary Examinations March 2021	
	Manufacturing Technology (Mechanical Engineering) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	S
1.	UNIT–I Describe the steps involved in making a casting with flow diagram.	14M
2.	OR Explain different steps involved in investment casting with neat diagram	14M
3.	UNIT–II Describe the process of arc welding with neat sketch and mention its applications	14M
4.	OR Describe the process of gas welding with neat sketch and mention its uses	14M
5.	UNIT–III Describe the process of Rolling and mention types of rolling mills.	14M
6.	OR Define the term strain hardening, Recovery, Grain growth and Recrystallization	14M
7.	UNIT-IV Distinguish between forward and backward extrusion with neat sketch	14M
8.	OR Explain the process of impact and hydrostatic extrusion in detail	14M
9.	UNIT-V Describe the process of Injection molding process with neat sketch	14M
10.	OR Describe the process of Compression moulding with neat sketch and its uses ***	14M

R-17 Code: 7(531 II B.Tech. I Semester Supplementary Examinations March 2021 Mechanics of Solids (Mechanics of Solids Mechanics of Solids (Mechanics of Solids Mechanics of Solids (Mechanics of Solids (Mechanics of Solids Mechanics of Solids (Mechanics of Solids		Hall Ticket Number :															_
II B.Tech. I Semester Supplementary Examinations March 2021 Mechanics of Solids (Mechanical Engineering) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* Marks CO Blooms (UNIT-1) 1. a) A composite bar of bronze and aluminium as shown in the following Fig. The temperature of the composite bar is raised by 100°C. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar is 1,600 mm2 E _b = 105 GPa, E _a = 70GPa, b = 18 × 10-6 /°C, a = 23 × 10-6 /°C. 0.6 mm → ↓ ← 450 ↓ A 40-mm cubical block is subjected to shear stress and it is observed that T _a = 240 N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. D A torsion test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm.The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the point of failure,(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. UNIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and H Co1 L3 H Co1		Code: 7G531	JJ.												R-1	7	
Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO Blooms UNIT-1	II B.Tech. I Semester Supplementary Examinations March 2021																
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* Marks CO Biooms Level 1. a) A composite bar of bronze and aluminium as shown in the following Fig. The temperature of the composite bar is raised by 100°C. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar is 1,600 mm2 E _b = 105 GPa, E _a = 70GPa, b = 18 x 10–6 /°C, a = 23 x 10–6 /°C. 0.6 mm A = 1300 mm ² A = 1600 mm ² b) A 40-mm cubical block is subjected to shear stress and it is observed that t _o = 240 N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 m. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar ut it yields at 35 KN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (ii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength; (iii) Utimate strength; (iii) Strength at the		Mark Marka 70		(Me	char	nica	Eng	linee	ering)			т	ine e t		-
UNIT-I a) A composite bar of bronze and aluminium as shown in the following Fig. The temperature of the composite bar is raised by 100°C. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar is 1,600 mm2 E_b = 105 GPa, E_a = 70GPa, b = 18 × 10-6 /°C, a = 23 × 10-6 /°C. 06 mm 01 F 02 C 03 C 03 C 04 uninium 05 G mm 104 c 105 G mm 105 G mm 106 c 107 c 108 c 109 c 100 c 101 c	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
 1. a) A composite bar of bronze and aluminium as shown in the following Fig. The temperature of the composite bar is raised by 100°C. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar is 1,600 mm2 E_b = 105 GPa, E_a = 70GPa, b = 18 × 10-6 /°C, a = 23 × 10-6 /°C. 0.6 mm b) A 40-mm cubical block is subjected to shear stress and it is observed that τ_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongatior; and (vi) Percentage reduction in area. M Co1 L3 															Marks	со	
 temperature of the composite bar is raised by 100°C. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar is 1,600 mm2 E_b = 105 GPa, E_a = 70GPa, b = 18 × 10-6 /°C, a = 23 × 10-6 /°C. 0.6 mm 0.8 mon 0.8 mon 0.8 mon 0.9 A 40-mm cubical block is subjected to shear stress and it is observed that τ_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 0 A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure (iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M Co1 L3 	4										6 - 11 -		_	T I			
 force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The area of cross-section of bronze bar is 1,300 mm2 and of aluminium bar. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure (w) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. M Co1 L3 	I. i	<i>,</i> .										•	•				
 aluminium bar is 1,600 mm2 E_b = 105 GPa, E_a = 70GPa, b = 18 × 10-6 /°C, a = 23 × 10-6 /°C. 0.6 mm 10M CO1 L3 10M CO1 L3 10M CO1 L2 240 N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 0R 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. 0N Co1 L3 5M Co1 L3 5M Co1 L3 9M Co1 L3		-	-				-						-				
 a = 23 × 10-6 /°C. 0.6 mm a = 360 B a = 450 b = 450 b = 450 c = 450 d = 1300 mm² A = 1600 mm² 10M C01 L3 b) A 40-mm cubical block is subjected to shear stress and it is observed that t_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. Cor 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Utimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. M C01 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 																	
 a b A 40-mm cubical block is subjected to shear stress and it is observed that t_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. a Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage length of failure when the diameter is reduced to 5 mm;(v) Percentage reduction in area. M Co1 L3 M Co1 L3 			0 mm	Z Eb	, = 1	05 G	ra, i	_ a =	/UGF	a, i	b = 1	οx	10-0 /	τ,			
 a 360 b 450 b 4																	
 Bronze Aluminium A = 1300 mm² A = 1600 mm² b) A 40-mm cubical block is subjected to shear stress and it is observed that t_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. CoR 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. M Co1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 		<−	←	000		١.	150		ł	:							
A = 1300 mm ² A = 1600 mm ² 10M C01 L3 b) A 40-mm cubical block is subjected to shear stress and it is observed that $\tau_6 = 240$ N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 4M C01 L2 Solution of the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 5M C01 L2 Solution of the salient points on it. SM C01 L3 b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M C01 L3 INIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and			<	360	B	∢ 	450	- <u>A</u> ·		; 							
A = 1300 mm ² A = 1600 mm ² 10M C01 L3 b) A 40-mm cubical block is subjected to shear stress and it is observed that $\tau_6 = 240$ N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 4M C01 L2 Solution of the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 5M C01 L2 Solution of the salient points on it. SM C01 L3 b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M C01 L3 INIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and		Į.	-6-				6			:							
A = 1300 mm ² A = 1600 mm ² 10M C01 L3 b) A 40-mm cubical block is subjected to shear stress and it is observed that $\tau_6 = 240$ N/mm ² . If shear modulus G = 84 kN/mm ² , determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 4M C01 L2 Solution of the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. 5M C01 L2 Solution of the salient points on it. SM C01 L3 b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M C01 L3 INIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and			Bro	nze			A	uminiu	m								
 b) A 40-mm cubical block is subjected to shear stress and it is observed that τ_e = 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. COR 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 3. A simply supported beam of length 7m, carries the uniformly distributed load and 		A		100	n²												
 240 N/mm². If shear modulus G = 84 kN/mm², determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. OR 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 3. A simply supported beam of length 7m, carries the uniformly distributed load and 															10M	CO1	L3
 resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit. OR 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm.The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. M CO1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 				-													
OR 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. 5M CO1 L3 b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm.The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M CO1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and L3											• •						
 2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 3. A simply supported beam of length 7m, carries the uniformly distributed load and 															4M	CO1	L2
 about the salient points on it. b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm. The bar during the test elongates to 80 mm. A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 3. A simply supported beam of length 7m, carries the uniformly distributed load and 																	
 10 mm.The bar during the test elongates to 80 mm.A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M CO1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 	2. a	,			luctile	e ma	terial	subj	ectec	to t	ensic	n ar	id exp	lain	5M	CO1	L3
 may be applied on the bar but it yields at 35 kN and finally breaks at 40 kN. Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M CO1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 							•	•	•								
 the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M CO1 L3 3. A simply supported beam of length 7m, carries the uniformly distributed load and 		•				-											
 reduced to 5 mm;(v) Percentage elongation; and (vi) Percentage reduction in area. 9M CO1 L3 UNIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and 		• ·	• • •			•	,				-		•				
UNIT-II 3. A simply supported beam of length 7m, carries the uniformly distributed load and		•			•		•										
3. A simply supported beam of length 7m, carries the uniformly distributed load and		area.		-							-				9M	CO1	L3
	-				1												
me pent leade de chemi in the following high brut the chedi horod and behang	3.				-					•							
Moment diagrams for the beam. Also calculate the location and magnitude of						-	-							-			

maximum bending moment.

14M CO2 L3

^{. . .}

4. A 7-m-long cantilever is free at end A and fixed at end B carries three loads as shown in Fig. Determine support reaction and draw SF diagram and BM diagram of the cantilever.

OR

- 5. Derive the expression for Shear Stress Distribution in a Rectangular Section of a Beam.
 - OR
- A beam is of circular sections of diameter D mm. At a particular section of the 6. a) beam, shear force is 10 kN. Determine the diameter D if the maximum shear stress at neutral layer is not to exceed 15 N/mm².
 - b) A T-section with dimensions, flange 120 mm x 20 mm and web 180 mm x 12 mm, is shown in Fig. It is subjected to a positive bending moment of 5 kN m. What are the stresses developed at extreme edges of the section?

- 7. A beam, 7 m long, carries a uniformly distributed load of 20 kN/m, run throughout its length. The beam is supported over a span of 5 m with overhang of 2 m on one side. Determine the slope and deflection at the free end. If E = 200 GPa and $I = 802 \times 10^4 \text{ mm}^4$.
 - OR
- A beam ABCD, 7 m long hinged at A and roller supported at D carries 7 kN load 8. at B and 4 kN/m udl over BC = 3 m. If EI = 14,000 kN m² for the beam, determine the slope at A and deflection at point C.

UNIT-V

- A thin cylindrical shell made of 5-mm-thick steel plate is filled with water under 9. a) pressure of 3 N/mm². The internal diameter of the cylinder is 200 mm and its length is 1.0 m. Determine the additional volume of the water pumped inside the cylinder to develop the required pressure. Given for steel E = 208 kN/mm² and μ = 0.3, and for water K = 2,200 N/mm².
 - b) Derive the expression for circumferential and volumetric strain for thin Cylinder Subjected to Internal Pressure p.

OR

- Evaluate the length of a cast iron column of 80 mm in diameter, the Euler's 10. a) theory is applicable, if $c = 550 \text{ N/mm}^2$ for CI and E = 102 kN/mm², the column is hinged at both the ends
 - b) Derive Lami's equation for thick cylinders subjected to internal and external pressures.

14M CO2 L3

14M CO3 L3

7M CO3 L3

- 7M CO3 L3
- 14M CO4 13
- 14M CO4 L3

CO5

CO5

CO5

L3

L4

13

L4

7M

7M

7M

7M

CO5

	Hal	I Ticket Number :]]
	Coc	le: 7G532]]]		R-17
	II B.Tech. I Semester Supplementary Examinations March 2021														
	Metallurgy and Material Science														
	(Mechanical Engineering) Max. Marks: 70 Time: 3 Hours														
	Answer any five full questions by choosing one question from each unit (5 x 14 = 70 Marks)														
	******** UNIT–I														
1.															
							0	-	3				, -		
2.		Explain the mecha	nism	of C	Cryst	alliza	tion i	n pu	re m	etals					
								••							
3.		Write short notes o	n			U	NIT–	11							
0.		(i) Gibbs phase		е											
		(ii) Composition	n rule	Э											
		(iii) Lever rule					о	R							
4.		What is an Invaria	nt re:	actio	n? F	zolai	_		arian	t rea	ction	s tha	t occur	in an	Iron-
		Iron carbide(Fe-Fe										0 11 10			
5.	a)	Give the classifica	tion	ofe	tools		NIT-l		typ	ical s	annlia	natio	ns of la	w m	edium
5.	a)	and high carbon st				. DC	30110		, typ		ippin	Janoi	13 01 10	, iii	culum
	b)	Discuss about Had	lfield	mar	ngan	ese s	steels	6							
		-					0								
6.		Describe briefly the	e pro	perti	ies a	nd ap	oplica	ations	s of c	coppe	er an	d its	alloys		
						U	NIT-I	V							
7.		Explain about stres	ss rel	lievir	ng ar				ıll an	neali	ng				
							0	R							
8.	a)	What is Normalizin	•	•		• •									
	b)	Compare hardenin	g an	d Te	empe	ring	proce	esses	5						
						U	NIT-	V							
9.		Classify composite	s. Ex	kplai	n ab	I			rced	com	posit	es			
							0	R							
10.		Discuss about part	icle r	reinfo	orce	d con	•	ites a **	and fi	ber r	einfc	orced	compo	osites	