Code: 7G533

II B.Tech. I Semester Supplementary Examinations March 2021

Basic Thermodynamics

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Discuss about Macroscopic and Microscopic view point of Thermodynamics.
b) What is meant by displacement work? Explain the same with reference to the Quasi-static process.

OR

2. To a closed system 150 KJ of work is supplied. If the initial volume is $0.6 \mathrm{~m}^{3}$ and the pressure of the system changes as $p=8-4 V$ where p is in bar and V is in m^{3}, determine the final volume and pressure of the system.

UNIT-II

3. a) Write short notes on Second law of Thermodynamics.
b) An inventor claims to develop an engine which absorbs 100 KW of heat from a reservoir at 1000 K produces 60 kW of work and rejects heat to a reservoir at 500 K . Will u advise investment in its development?

OR

4. Three Carnot Heat Engines HE1, HE2, HE3 are connected in series. They are working with same thermal efficiency. The heat supplied to the entire system is 2400 kW and heat rejected from entire system is 300 kW Calculate work done for each engine.

UNIT-III

5. a) Draw and explain P-T diagram for pure substance
b) Find the specific volume, enthalpy, entropy and internal energy of wet steam at 18 bar, dryness fraction 0.85

OR

6. $\quad 1 \mathrm{~kg}$ of steam initially dry saturated at 1.1 MPa expands in a cylinder following the law $\mathrm{pV}^{1.13}=\mathrm{c}$. The pressure at the end of expansion is 0.1 MPa . Determine i) Final volume ii) Final dryness fraction iii) Work done iv) Change in internal energy v) Heat transferred.

UNIT-IV

7. a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
b) Explain Throttling process and Free expansion process.

OR

8. $\quad 1.5 \mathrm{~kg}$ of air at pressure 6 bar occupies a volume of $0.2 \mathrm{~m}^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods. (i) Isothermal process (ii) Adiabatic process (iii) Polytropic process.

UNIT-V

9. The volumetric analysis of a dry flue gas in a boiler trail is given in percentage as $13 \% \mathrm{CO}_{2}, 1.5 \% \mathrm{CO}$, $3.5 \% \mathrm{O}_{2}$ and $82 \% \mathrm{~N}_{2}$. Determine the percentage gravimetric analysis also find the specific gas constant of the mixture

OR

10. a) A gas mixture consists of 7 kg nitrogen and 2 kg oxygen, at 4 bar and $27^{\circ} \mathrm{C}$. Calculate the mole fraction, partial pressure, molar mass, gas constant, volume and density.
b) State Avogadro's law of Additive volumes.
|| B.Tech. I Semester Supplementary Examinations February 2021

Engineering Mathematics-III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the real root of equation $x^{3}-x-11=0$ by bisection method.
b) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y$; $y(0)=1$.

OR

2. a) Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.
b) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with initial condition $y=1$ at $x=0$. Find y for $x=0.1$ by Euler's method.

UNIT-II

3. a) Using Newton's forward interpolation formula and the given table of values

x	1.1	1.3	1.5	1.7	1.9
$\mathrm{~F}(\mathrm{x})$	0.21	0.69	1.25	1.89	2.61

Obtain the value of $f(x)$ when $x=1.2$
b) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

OR
4. a) Evaluate $f(10)$ given $f(x)=168,192,336$ at $x=1,7,15$ respectively. Use Lagrange interpolation.
b) Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by Simpson's $1 / 3$ rule.

UNIT-III

5. a) By the method of least squares, find the straight line that best fits the following data.

x	1	2	3	4	5
y	14	27	40	55	68

b) Form the partial differential equation by eliminating the arbitrary constants $x^{2}+y^{2}+(z-c)^{2}=a^{2}$
6. a) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=f(x+a y)+g(x-a y)$
b) Solve $p \tan x+q \tan y=\tan z$.

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=\pi-x$ in $0<x<\pi$
b) Expand $f(x)=\cos x, 0<x<\pi$ in half range sine series.

OR

8. Determine the Fourier series for $f(x)=x \sin x$ in the interval $0<x<2 \pi$

UNIT-V

9. a) Find the finite Fourier sine and cosine Transforms of $f(x)$ defined by $f(x)=1$ where $0<x<\pi$
b) Find the Fourier sin and cosine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$

OR

10. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$, hence, derive the Fourier sine transform of $\phi(x)=\frac{x}{1+x^{2}}$
Hall Ticket Number :
Code: 7G534
II B.Tech. I Semester Supplementary Examinations March 2021 Manufacturing Technology (Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I
11. Describe the steps involved in making a casting with flow diagram.
OR
12. Explain different steps involved in investment casting with neat diagram

UNIT-II

3. Describe the process of arc welding with neat sketch and mention its applications
OR
4. Describe the process of gas welding with neat sketch and mention its uses

UNIT-III

5. Describe the process of Rolling and mention types of rolling mills.

OR

6. Define the term strain hardening, Recovery, Grain growth and Recrystallization

UNIT-IV

7. Distinguish between forward and backward extrusion with neat sketch

OR

8. Explain the process of impact and hydrostatic extrusion in detail
UNIT-V
9. Describe the process of Injection molding process with neat sketch
OR
10. Describe the process of Compression moulding with neat sketch and its uses

Code: 7G531

II B.Tech. I Semester Supplementary Examinations March 2021

Mechanics of Solids

Max. Marks: 70
(Mechanical Engineering)
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A composite bar of bronze and aluminium as shown in the following Fig. The temperature of the composite bar is raised by $100^{\circ} \mathrm{C}$. Determine the compressive force developed in the bars after the rise of temperature and the change in length of aluminium bar. The area of cross-section of bronze bar is $1,300 \mathrm{~mm} 2$ and of aluminium bar is $1,600 \mathrm{~mm} 2 \mathrm{E}_{\mathrm{b}}=105 \mathrm{GPa}, \mathrm{E}_{\mathrm{a}}=70 \mathrm{GPa}, \alpha_{\mathrm{b}}=18 \times 10-6 /{ }^{\circ} \mathrm{C}$, $\alpha_{a}=23 \times 10-6 /{ }^{\circ} \mathrm{C}$.

b) A $40-\mathrm{mm}$ cubical block is subjected to shear stress and it is observed that $\tau_{\mathrm{e}}=$ $240 \mathrm{~N} / \mathrm{mm}^{2}$. If shear modulus $G=84 \mathrm{kN} / \mathrm{mm}^{2}$, determine (i) the modulus of resilience, (ii) the shear strain at elastic limit and (iii) the total strain energy absorbed at elastic limit.

OR

2. a) Draw stress-strain curve for a ductile material subjected to tension and explain about the salient points on it.
b) A tension test is conducted on a steel bar of gauge length 55 mm and diameter 10 mm . The bar during the test elongates to 80 mm .A maximum load of 80 kN may be applied onthe bar but it yields at 35 kN and finally breaks at 40 kN . Find the following parameters.(i) Yield strength; (ii) Ultimate strength; (iii) Strength at the point of failure;(iv) Actual strength at the point of failure when the diameter is reduced to 5 mm ;(v) Percentage elongation; and (vi) Percentage reduction in area.

UNIT-II

3. A simply supported beam of length 7 m , carries the uniformly distributed load and two-point loads as shown in the following Fig. Draw the Shear Force and Bending Moment diagrams for the beam. Also calculate the location and magnitude of maximum bending moment.

OR

4. A 7-m-long cantilever is free at end A and fixed at end B carries three loads as shown in Fig. Determine support reaction and draw SF diagram and BM diagram of the cantilever.

UNIT-III

5. Derive the expression for Shear Stress Distribution in a Rectangular Section of a Beam.

OR

6. a) A beam is of circular sections of diameter D mm . At a particular section of the beam, shear force is 10 kN . Determine the diameter D if the maximum shear stress at neutral layer is not to exceed $15 \mathrm{~N} / \mathrm{mm}^{2}$.
b) A T-section with dimensions, flange $120 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $180 \mathrm{~mm} \times 12$ mm , is shown in Fig. It is subjected to a positive bending moment of 5 kN m . What are the stresses developed at extreme edges of the section?

7. A beam, 7 m long, carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$, run throughout its length. The beam is supported over a span of 5 m with overhang of 2 m on one side. Determine the slope and deflection at the free end. If $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=802 \times 10^{4} \mathrm{~mm}^{4}$.

OR

8. A beam $A B C D, 7 \mathrm{~m}$ long hinged at A and roller supported at D carries 7 kN load at B and $4 \mathrm{kN} / \mathrm{m}$ udl over $\mathrm{BC}=3 \mathrm{~m}$. If $\mathrm{EI}=14,000 \mathrm{kN} \mathrm{m}^{2}$ for the beam, determine the slope at A and deflection at point C .

14M CO4

UNIT-V

9. a) A thin cylindrical shell made of 5 -mm-thick steel plate is filled with water under pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the cylinder is 200 mm and its length is 1.0 m . Determine the additional volume of the water pumped inside the cylinder to develop the required pressure. Given for steel $\mathrm{E}=208 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mu=0.3$, and for water $\mathrm{K}=2,200 \mathrm{~N} / \mathrm{mm}^{2}$.
b) Derive the expression for circumferential and volumetric strain for thin Cylinder Subjected to Internal Pressure p.

7M CO5
10. a) Evaluate the length of a cast iron column of 80 mm in diameter, the Euler's theory is applicable, if $\sigma_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ for Cl and $\mathrm{E}=102 \mathrm{kN} / \mathrm{mm}^{2}$, the column is hinged at both the ends
b) Derive Lami's equation for thick cylinders subjected to internal and external pressures.

7M CO5

Code: 7G532
II B.Tech. I Semester Supplementary Examinations March 2021

Metallurgy and Material Science

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. What are the methods used for measuring the grain size? Discuss any two of them. OR
2. Explain the mechanism of Crystallization in pure metals

UNIT-II

3. Write short notes on
(i) Gibbs phase rule
(ii) Composition rule
(iii) Lever rule

OR

4. What is an Invariant reaction? Explain the Invariant reactions that occur in an IronIron carbide($\mathrm{Fe}^{-} \mathrm{Fe}_{3} \mathrm{C}$) diagram

UNIT-III

5. a) Give the classification of steels. Describe the typical applications of low, medium and high carbon steels.
b) Discuss about Hadfield manganese steels

> OR
6. Describe briefly the properties and applications of copper and its alloys

UNIT-IV

7. Explain about stress relieving annealing and full annealing

OR
8. a) What is Normalizing? Explain its purpose
b) Compare hardening and Tempering processes

UNIT-V

9. Classify composites. Explain about fiber reinforced composites

OR
10. Discuss about particle reinforced composites and fiber reinforced composites

