
	F	Hall Ticket Number :													
	С	ode: 7G531											-	R-17	
		II B.Tech. I Semester Supplementary Examinations March/April 2023 Mechanics of Solids								April 2023					
						e ch a char									
		Max. Marks: 70						_		-	-			Time: 3 Hours	
	А	Answer any five full qu	vestic	ons b	y ch	oosir	-	ne q *****	uesti	on fr	om e	each	unit (5	x14 = 70 Marks)	
								IT–I							Marks
1.		A tensile test was	S CO	ndu	cted	L on			teel	bai	r Th	e fo	llowin	a data was	
		obtained from the			0.00		a							g data nao	
		(i) Diameter of the													
		(ii) Gauge length					cm								
		(iii) Load at elasti (iv) Extension at					l=0	21m	m						
		(v) Maximum load					-0.								
		(vi) Total extension													
		(vii) Diameter of I	rod	at fa	ilure	e = 2	2.25	cm							
		Determine: (a) The Young's	moc	1	2		(b) Т	he s	stree	ss a [.]	t ela	stic li	nit	
		(c) The percentage				atior	•							ase in area.	14M
		., .			Ŭ		,	Ó	-			0			
2.	a)	Prove that the ma	axin	num	stre	ess i	indu	iced	in a	a bo	dy c	lue	to sud	denly applied	
		load is twice the	stre	ss ir	nduc	ed v	whe	n th	e sa	me	load	d is	applie	d gradually.	7M
	b)	Define the term '		•					•		find	the	stres	ses and load	
		carried by each i	mer	nbe	r of	a co	•			ar?					7M
_			_		_			IIT–					_		
3.		A beam ABC 8		U				•••						• •	
		at B 6 m from A the entire length													
		force and bendir		•						a		enu	C. DI	aw the shear	14M
			ig ii	10111	on	ulu	gran	0	R						1 1101
4.		A simple suppor	ted	bea	mc	of le	nath	_		sts	ons	supr	oorts (Sm apart, the	
		right hand end					•					•••		•	
		distributed load of													
		and bending mor	nen	t dia	Igra	ms a	and	find	the	poi	nt of	fcor	ntra fle	exure, if any?	14M
								IT–I							
5.	a)	Derive the section	on r	nod	ules	s foi	r (a)) reo	ctan	gula	ar s	ecti	on an	d (b) circular	
	F /	section	• -			بام	• • •	4	1 1-	• -				on office :-	7M
	D)	Prove that for 1.5times the ave			-										7M
			ay	ะ วเ	1692	ס. סי	VGIC			uial		015			
														Page 1 of 2	

Page **1** of **2**

6. Prove that the moment of a resistance of a beam of square section, with its diagonal in the plane of bending is increased by flatting top and bottom corners as shown in figure and that moment of resistance is maximum when $y = \frac{8a}{9}$. Find the percentage increase in moment of resistance also.

Define Macaulay's method? And find out Deflection of a simply supported 7. beam with an Eccentric point load

OR

- A beam of length 6 m is simply supported at the ends and carries two 8. point loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectively from the left support. Compute,
 - i. Slope and deflection under each load. ii. Maximum deflection
 - iii. The point at which maximum deflection occurs.

Assume E = 2 X 10^5 N/mm² and I = 85 X 10^6 mm⁴.

14M

14M

14M

UNIT-V

A solid round bar 3 m long and 5 cm in diameter is used as a sturt. 9. Determine the cripping load when the given sturt is used for the following conditions

i) Both the ends are hinged

- ii) Both the ends are fixed
- iii) One end is fixed and one end is hinged and

iv) One end is fixed and one end is free.

Take E = $2.1 \times 10^5 \text{ N/mm}^2$. Also find safe load taking factor of safety as 4 in each case. 14M

OR

What are the stresses induced in the thin cylindrical shell subjected to 10. internal pressure? Explain and derive them.

	Code: 7GC32
	Il B.Tech. I Semester Supplementary Examinations March/April 2023
	Engineering Mathematics-III
	(Common to All Branches)
	Max. Marks: 70 Time: 3 Hours
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
	Ma
	UNIT–I
•	Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2 y(0) = 1$. Find the initial values
	y(-0.1), y(0.1), y(0.2) from the Taylors series method.
	OR
•	Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to
	four decimal places.
•	The following table of values of x and y is given.
	x 0 1 2 3 4 5 6 y 6.9897 7.4036 7.7815 8.1291 8.4510 8.7506 9.0309
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=6
	OR
	Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and
	backward interpolation formula.
	x 20 25 30 35 40 45
	y 354 332 291 260 231 204
•	Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and
	g(y) from $z = y f(x) + x g(y)$.
	OR
•	Solve $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ 1
	UNIT-IV
•	Find the Fourier series to represent $f(x) = x $ when $-f < x < f$ and deduce that 1 1 1 f^2
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$
	0R
	Find the half range cosine series for the function $f(x) = x$, when $0 < x < f$ hence show
	that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$
	UNIT–V
	If $F(s)$ is the complex Fourier transform of $f(x)$ then prove that
	$\Gamma(c(-)) = \frac{1}{r} \frac{r}{s} = 0$
	$F\left\{f\left(ax\right)\right\} = \frac{1}{a}F\left(\frac{s}{a}\right), a \neq 0$
	OR
•	Find the Fourier transform of $e^{- x }$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{f}{2}e^{-m}, m > 0$
	$\int_{0}^{1} 1+x^{2} = 2$
	ů v