Code: 7G531
|| B.Tech. I Semester Supplementary Examinations March/April 2023

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A tensile test was conducted on a mild steel bar. The following data was obtained from the test:
(i) Diameter of the steel bar $=3 \mathrm{~cm}$
(ii) Gauge length of the bar $=20 \mathrm{~cm}$
(iii) Load at elastic limit=250kN
(iv) Extension at a load of $150 \mathrm{kN}=0.21 \mathrm{~mm}$
(v) Maximum load $=380 \mathrm{kN}$
(vi) Total extension $=60 \mathrm{~mm}$
(vii) Diameter of rod at failure $=2.25 \mathrm{~cm}$

Determine:
(a) The Young's modulus
(b) The stress at elastic limit
(c) The percentage of elongation
(d) The percentage decrease in area.

OR

2. a) Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
b) Define the term 'composite bar'. How will you find the stresses and load carried by each member of a composite bar?

UNIT-II

3. A beam ABC 8 m long has the support at the end A and other support at B 6 m from A. It carries a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ over the entire length and a point load of 10 kN at the end C . Draw the shear force and bending moment diagrams

OR

4. A simple supported beam of length 8 m rests on supports 6 m apart, the right hand end is overhanging by 2 m . The beam carries a uniformly distributed load of $1500 \mathrm{~N} / \mathrm{m}$ over the entire length. Draw the shear force and bending moment diagrams and find the point of contra flexure, if any?

UNIT-III

5. a) Derive the section modules for (a) rectangular section and (b) circular section
b) Prove that for a rectangular section the maximum shear stress is 1.5 times the average stress. Sketch the variation of shear stress.

OR

6. Prove that the moment of a resistance of a beam of square section, with its diagonal in the plane of bending is increased by flatting top and bottom corners as shown in figure and that moment of resistance is maximum when $y=\frac{8 a}{9}$. Find the percentage increase in moment of resistance also.

UNIT-IV
7. Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load

OR

8. A beam of length 6 m is simply supported at the ends and carries two point loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectively from the left support. Compute,
i. Slope and deflection under each load. ii. Maximum deflection
iii. The point at which maximum deflection occurs.

Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=85 \times 10^{6} \mathrm{~mm}^{4}$.

UNIT-V

9. A solid round bar 3 m long and 5 cm in diameter is used as a sturt. Determine the cripping load when the given sturt is used for the following conditions
i) Both the ends are hinged
ii) Both the ends are fixed
iii) One end is fixed and one end is hinged and
iv) One end is fixed and one end is free.

Take $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Also find safe load taking factor of safety as 4 in each case.

OR

10. What are the stresses induced in the thin cylindrical shell subjected to internal pressure? Explain and derive them.

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Use Milne's method to find $y(0.3)$ from $y^{\prime}=x^{2}+y^{2} y(0)=1$. Find the intial values $y(-0.1), y(0.1), y(0.2)$ from the Taylors series method.

OR
2. Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

UNIT-II

3. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=6$

OR

4. Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula.

x	20	25	30	35	40	45
y	354	332	291	260	231	204
UNIT-III						

OR

6.

Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$

UNIT-IV

7. Find the Fourier series to represent $f(x)=|x|$ when $-\pi<x<\pi$ and deduce that

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}
$$

8. Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. If $F(s)$ is the complex Fourier transform of $f(x)$ then prove that

$$
F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right), a \neq 0
$$

OR

10.

Find the Fourier transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}, m>0$

