Hall Ticket Number :								Г		\neg
Code: 7G533	l I		· ·		1		11.		R-17	
II B.Tech. I Se	emestei	Supp	oleme	entar	y Exai	mina	tions	August	2021	
	E	Basic	Therr	mod	ynan	nics				
	(Mech	nanico	al Eng	gineeri	ng)				
Max. Marks: 70 Answer <i>any five</i> full qu	estions b	y chod	_	ne qu	Jestion	from	each	unit (5x	Time: 3 Ho 14 = 70 Mark	
			UN	IIT–I						
Classify the types of the	ermodynar	nic syst	ems wi	th the	help of	suitab	le exan	nple.		7M
Identify the differences I	between o	pen sys	stem ar	nd clos	ed syst	em in	thermo	dynamics	S.	7M
			_	R		001/D	0.4	2. 0.4	4D 0.00 3	
A mass of gas is compound Assuming that pressure during the process. Iden	e and vol	ume ar	e relate	ed by	PV ⁿ = c	constar	nt. Find	I the wor	k interaction	8M
Differentiate between fexamples.	Reversible	proce	ss and	Irreve	ersible	Proces	ss with	the help	o of suitable	6M
			UN	IT–II						
Determine the expression	on for the	measuı	rement	of per	forman	ce for r	eversik	ole heat e	engines, heat	
pump and refrigerators.							101			
State Carnot theorem.				\D						4M
Derive Maxwell relations	s and ded	uce two)R eguatio	ons					101
Define the following Ter				•						4M
3	,	,	-	IT–III						
Write about the Mollier	Chart and	its use.			_					7M
Draw and explain P-V d	iagram foi	pure s	ubstan	ce.						7M
			O	R						
Draw a neat sketch o determined.	f throttling	g calori	meter	and e	xplain	how d	ryness	fraction	of steam is	71
Find the internal energy (i) its quality is 80 % (ii)										71
				T–IV			_		_	
0.3 m ³ of air at pressurexpansion to be polytro =1.4		-				-			_	7M
Derive the expressions	for heat tra	ansfer a		rk done	e during	g a revo	ersible	isotherm	al process.	7N
One kg of CO ₂ has a			at 100°	C. Co						101

1.

2.

3.

5.

6.

7.

8.

 $b=0.0423 \text{ m}^3/(\text{kg-mol}).$

b) List out the assumptions made in the ideal gas equation.

UNIT-V

State Dalton's law of additive pressure and Amagat's law of additive volumes 9.

Explain Mass fraction . Mole fraction, Internal energy and specific heat of gas mixtures

6M 8M

4M

OR

10. A gas mixture consists of 0.4kg of carbon monoxide and 1.1 kg of carbon dioxide Calculate the 14M mass fraction, mole fraction, molar mass and gas constant.

	ŀ	Hall Ticket Number :	\neg
	C	R-17	
		II B.Tech. I Semester Supplementary Examinations August 2021	
		Engineering Mathematics-III (Common to All Branches)	
		Max. Marks: 70 Time: 3 Hou	
	F	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ************************************	<i>3</i>)
		UNIT-I	
1. a	a)	Using the bisection method, find a real root of the equation $\cos x = xe^x$ correct to three decimal places.	7M
b)	Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, $y(0) = 1$ determine $y(0.1)$ correct	71.4
		dx 2 to four decimal places.	7M
		OR	
2.		Find the real root of the equation $xe^x = 3$ by Regular-falsi method.	14M
		UNIT-II	
3.		Using Lagrange formula find $f(4)$. Given	
		x 0 2 3 6 y -4 2 14 158	14M
		y -4 2 14 158 OR	1-1101
4.		Evaluate $\int_{0}^{1} \sqrt{1+x^3} dx$ taking h = 0.1 Using (i) Simpson's 1/3 rd rule (ii) Trapezoidal rule.	14M
		UNIT-III	
5.		Fit a second degree parabola to the following data by the method of least squares x 10 12 15 23 20	
		y 14 17 23 25 21	14M
		OR	
6.		Form a partial differential equation from $z = f(x + y)$.	14M
-		UNIT-IV	
7.		Obtain the Fourier series for $f(x) = x - x^2$ in the interval $[-f, f]$. Hence show that	
		$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$	14M
		OR	14111
8.		Find the half range cosine series for the function $f(t) = t - t^2$, in $0 < t < 1$	14M
		UNIT-V	
9.		Find the Fourier cosine transform of $f(x) = e^{-ax}(x > 0, a > 0)$.	14M

Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$

10.

Page 1 of 1

14M

		Hall Ticket Number: R-17
	(Code: 7G532
		II B.Tech. I Semester Supplementary Examinations August 2021
		Metallurgy and Material Science (Mechanical Engineering)
	-	Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		UNIT-I
1.	a)	Define alloy. Explain its necessity.
	b)	Discuss about Schottky defect and Frankel defect. OR
2.		Classify bonds and explain them with examples
		UNIT-II
3.		Draw a neat sketch of Iron-Iron Carbide (Fe-Fe ₃ C) diagram and label all important points,
		lines and phases in it.
		OR
4.	a)	Classify Equilibrium diagrams
	b)	Define Liquidus line, Solidus line and Solvus line.
_	- \	What do you understand by Sagan gracking and bow it can be provented
5.	a) b)	What do you understand by Season cracking and how it can be prevented What is dezincification? How it can be minimized
	D)	OR
6.		Explain the Composition, microstructure, properties and applications of
		(i) White cast iron
		(ii) Spheroidal Graphite cast Iron
		UNIT-IV
7.	a)	What is Surface treatment? Mention its characteristics
	b)	Briefly explain Sheradising process.
8.		OR Elaborate the diffusion and mechanical coating process
9.		UNIT-V Explain any two methods of manufacture of composites
ⅎ.		OR
10.		Describe the basic steps in powder metallurgy process
٠.		***

9.

10.

		R-17	
	C	Code: 7G531	
		II B.Tech. I Semester Supplementary Examinations August 2021	
		Mechanics of Solids	
	٨	(Mechanical Engineering) Max. Marks: 70 Time: 3 Ho	ırs
		Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark ***********************************	
		UNIT-I	
1.	a)	Draw the stress-strain diagram of mild steel specimen subjected to tensile test and explain the salient points.	7M
	b)	An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN elongates 0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm. Calculate the modulus of elasticity and the poisson's ratio of the material.	7M
•	,	OR	
2.	a)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses	7M
	b)	Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.	7M
2		A beam ABC 8 m long has the support at the end A and other support at B 6 m from A. It	
3.		carries a uniformly distributed load of 6 kN/m over the entire length and a point load of 10kN at the end C. Draw the shear force and bending moment diagrams OR	14M
4.		A simple supported beam of length 8m rests on supports 6m apart, the right hand end is overhanging by 2 m. The beam carries a uniformly distributed load of 1500 N/m over the	
		entire length. Draw the shear force and bending moment diagrams and find the point of contra flexure, if any?	14M
		UNIT-III	
5.	a)	Prove that for a rectangular section the maximum shear stress is 1.5times the average stress. Sketch the variation of shear stress.	7M
	b)	Circular beam of 100mm diameter is subjected to a shear force of 10 KN. Calculate i. Average shear stress.	
		ii. Maximum shear stress.	7M
		Also sketch the variation of the shear stress along the depth of the beam. OR	/ IVI
6.	a)	Derive the section modules for a hollow rectangular section	4M
	b)	A beam is simply supported and carries a U.D.L of 40kN/m run over the whole span. The section of the beam is rectangular having depth as500mm. If the maximum stress in the material of the beam is 120N/mm ² and moment of inertia of the section is 7x 10 ⁸ mm ⁴ , find	
		the span of the beam.	10M
		UNIT-IV	
7.	a)	Derive the relationship between slope, deflection and radius of Curvature of a simply supported beam.	7M
	b)	A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the slope at the ends of the beam is not to exceed 1°, find the maximum deflection. OR	7M
8.		A beam ABC of length 10 m has one support at the left end and the other support at a distance of 6 m from the left end. The beam carries a point load of 1 kN at right end and also carries a UDL of 3 kN/m over a length of 4 m from right end 'C'. Determine the slope	
		and deflection at point 'C'. Take E= 2 X 10 ⁵ N/mm ² and I = 5 X 10 ⁸ mm ⁴ . UNIT-V	14M
9.		State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.	14M
٥.		OR	1 -1 1VI
10.		A compound cylinder is made by shrinking a cylinder of external diameter cylinder of 30 cm and internal diameter25cm over another cylinder of external diameter 25cm and internal	
		diameter20cm. After shrinking the radial pressure at the common junction was 8 N/mm2. Find the final stresses set up across the section when the compound cylinder is subjected to	
		an internal fluid pressure of 84.5 N/mm ² . ***	14M

	Hall Ticket Number :														
	Code: 7G534	J			L	I		1		I	J		R-	·17	
	II B.Tech. I Semester Supplementary Examinations August 2021														
	Manufacturing Technology (Mechanical Engineering)														
	Max. Marks: 70 Answer any five full qu	estior	·		ng or				•	ach	unit (: 3 Ho) Mark	
					UNI	T–I									
1.	Define the pattern? ar	nd List	t the typ	oes of	•		with	neat	sket	ches					14M
2.	Discuss the principle	of Cer	ntrifugal	casti	OF ing pi		ses	ment	ion i	ts me	erits a	and d	emer	its.	14M
					UNIT	Γ–II	7								
3.	Define the term Weldi	ng? M	1ention	class			f wel	ding	proc	ess i	n deta	ail			14M
4.	What is Thermit welding	g? Ex	plain th	e prod	OF cess.		list a	ny th	ree a	ıdvar	itages	s and	limita	ations	14M
					UNIT	-III	7								
5.	Describe the process	of sta	mping a	L	ormin	g usi	ng n	eat s	ketcl	า					14M
6.	Explain about hot and	cold	spinnin	g with	OF help		eat s	sketc	hes r	nent	ion its	s app	licatio	ons	14M
							7								
7.	Describe the basic ex	trusio	n proce	L	UNIT d its		acter	istics	5						14M
8.	Name and Demonstra	ite the	proces	ss of r	OF manu		ıring	of Co	onne	cting	rod.				14M
						- \	7								
9.	Define the term polym	ner? M	1ention	the p	TINU roper OF	ties o	of pla	astics	in d	etail					14M
10.	Supreme Chairs are r	nanuf	acturing	by w			ess?	Exp	lain i	n de	tail				14M