II B.Tech. I Semester Supplementary Examinations November 2023

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100 KN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the modulus of elasticity and the poisson's ratio of the material.
2. a) Derive the relationship between young's modulus, modulus of rigidity and bulk modulus.
b) Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses.

UNIT-II

3. a) What are the different types of beams?
b) A cantilever of length 2 m carries a of $1 \mathrm{kN} / \mathrm{m}$ run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the cantilever.

OR

4. a) Define point of contra flexure.
b) Draw the shear force and B.M diagram for a simply supported beam of length 8 m and carrying a uniformly distributed load of $12 \mathrm{KN} / \mathrm{m}$ for a distance of 4 m from the left end. Also calculate the maximum B.M on the section.

UNIT-III

5. a) Prove that for a rectangular section the maximum shear stress is 1.5 times the average stress. Sketch the variation of shear stress.
b) Derive the section modules for (a) rectangular section and (b) circular section 6M

OR
6. a) Derive the section modules for a hollow rectangular section
b) A timber beam 120 m wide and 185 mm deep supports a u.d.l of intensity $\mathrm{w} \mathrm{KN} / \mathrm{m}$ length
over a span of 2.7 m . If the safe stresses are 29 Mpa in bending and 3 Mpa in shear,
calculate the safe intensity of the load which can be supported by the beam. 10 M

UNIT-IV

7. a) Derive an expression for slope and deflection at free end of a cantilever beam subjected to UDL over entire span.
b) Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load

OR

8. A rectangular reinforced concrete simply supported beam of length 2 m and cross section $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ is carrying an uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ through its span. Find the maximum slope and deflection. Take $\mathrm{E}=2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT-V

9. State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.

OR

10. Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.

Code: 7GC32

R-17
II B.Tech. I Semester Supplementary Examinations November 2023

Engineering Mathematics-III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks

UNIT-I

1. a) Find the real root of equation $x^{3}-x-11=0$ by bisection method.
b) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y$; $y(0)=1$.

OR

2. Using R-K method of $4^{\text {th }}$ order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$. Find $y(0.2), y(0.4)$.

UNIT-II

3. a) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

b) Evaluate $f(10)$ given $f(x)=168,192,336$ at $x=1,7,15$ respectively. Use Lagrange interpolation.
4. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines $x=0$ and $x=1$ and a curve through the points with the following co-ordinates:

x	0.00	0.25	0.5	0.75	1.00
y	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the soli formed using Simpsons rule.

UNIT-III

5. a) Form the partial differential equation by eliminating the arbitrary constants

$$
x^{2}+y^{2}+(z-c)^{2}=a^{2}
$$

b) Fit a second degree parabola to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21

OR
6. a) Fit a straight line $y=a+b x$ to the data by the method of least squares

x	0	1	3	6	8
y	1	3	2	5	4

b) Form the partial differential equation by eliminating a, b from $z=a x+b y+a^{2}+b^{2}$

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=\pi-x$ in $0<x<2 \pi \quad 7 \mathrm{M}$
b) Expand $f(x)=\cos x, 0<x<\pi$ in half range sine series. 7M

OR

8. Express $f(x)=x$ as half range sine and cosine in $0<x<2$

UNIT-V

9. a) Find the Fourier sin and cosine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$
b) Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.

OR

10. Find the Fourier transform of $f(x)=\left\{\begin{array}{c}1-x^{2},|x| \leq 1 \\ 0,|x| \geq 1\end{array}\right.$.

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

