
Ha	all Ticket Number :								٦
Co	de: 7G532						F	R-17	
00	II B.Tech. I Se	emester	relaau	nentarv	/ Examina	ations No	v/Dec 20	22	
					terial Sc		,		
			•••		gineering				
	ax. Marks: 70							: 3 Hours	
Ar	nswer any five full q	uestions k	by choosi	ng one c	•	om each u	nit (5x14 = 7	70 Marks)	
			r						Ма
				UNIT-					
•	What are the meth	nods used	for meas	-	grain size	? Discuss a	any two of th	nem.	14
				OR					
•	Discuss about the	classifica	tion of Int	ermediat	e Alloy Pha	ases			14
				UNIT-I					
•	From the data give		for CU-Ni	system,	plot the eq	luilibrium di	agram to so	cale and	
	label the diagram.	0	20	20	60	90	100		
	Weight % Ni Liquidus		20	30	60	80	100		
	temperature ^o C	1084	1200	1275	1345	1440	1455		
	Solidus	1084	1165	1235	1310	1380	1455		
	temperature ^o C								
	Answer the followi (i) What is the	•	•		(ctallizing)	out from lig	uid2		
	(ii) What is the	•		-		•			
	(iii) What are the	•					iumoutori :		14
	(,			OR		-			-
	Draw a neat sket	tch of Iro	n-Iron Ca		e-Fe ₃ C) dia	agram and	label all in	nportant	
	points, lines and p								14
				UNIT-I	11				
. a)	Discuss about Ha	dfield mar	nganese s	steels					7
b)	What do you unde	erstand by	Season	cracking a	and how it	can be prev	vented		7
				OR					
. a)	Explain the micros	structure,	properties	s and app	lications o	f Grey cast	iron		7
b)	Discuss about ma	lleable ca	st iron me	entioning	its properti	ies and app	olications		7
				UNIT–ľ	V				
	Explain about stre	ss relievir	ng anneal	ing and fu	ull annealir	ng			14
				OR					
. a)	Differentiate betwe	een Anne	aling and	Normaliz	ing				7
b)	Differentiate betwe	een carbu	rizing and	d Nitriding	I				7
				UNIT-\	V				
	Explain any two m	nethods of	manufac	ture of co	mposites				14
				OR					
. a)	Differentiate betwe	een acidic	and basi	c OH pro	cess				7
b)	Define powder me	etallurgy p	rocess ar	nd applica	itions of po	wder meta	llurgy		7
-				***	-				

Hall Ticket Number :	
Code: 7G531	
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
Mechanics of Solids	
(Mechanical Engineering)	
Max. Marks: 70 Time: 3 Hours	
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	Marks
UNIT–I	
1. a) Derive the relationship between young's modulus, modulus of rigidity and	
bulk modulus.	7M
b) A bar of 20mm diameter is tested in tension it is observed that when a lead	

of 40KN is applied the extension measured over a gauge length of 200mm us 0.12mm&contraction in diameter is 0.0036mm. Find poisson's ratio, young's modulus &bulk modulus &v rigidity modulus.

OR

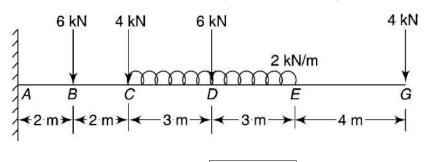
2. A brass bar, having cross-sectional area of 1000 mm² is subjected to axial forces as shown in figure. Find the total elongation of the bar. Take E=1.05 x 10^5 N/mm².

3. Draw the shear force and bending moment diagram for the given beam.

7M

14M

14M


7M

7M

7M

14M

4. Draw the shear force and bending moment diagram for the given beam.

UNIT-III

5. A cast iron beam has an I-section with top flange 80 mm × 40 mm, web 120mm ×20mm and bottom flange 160mm ×40 mm. If the tensile stress is not to exceed 30N/mm² and compressive stress 90 N/mm², what is the maximum uniformly distributed load the beam can carry over a simply supported span of 6 m if the larger flange is in tension?

OR

- 6. a) A wooden beam of rectangular section 15 cm x 30 cm is simply supported over a length of 4m. It carries a UDL of 4kN/m throughout its length. What is the maximum shear stress developed in the beam section?
 - b) A beam is of a circular section of diameter 80 mm. At particular section SF is 40kN. Draw the shear stress distribution along the depth of the section? 7M

UNIT–IV

- 7. a) Derive the relationship between slope, deflection and radius of Curvature of a simply supported beam.
 - b) A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the slope at the ends of the beam is not to exceed 1⁰, find the maximum deflection.

OR

8. A cantilever beam of span 2 m supports a UDL of 2 kN/m over a length of
1 m from the fixed end and a point load of 1 kN at 1 m from the free end.

Find the slope and deflection at the free end if $\mbox{ EI=}1.4\,x10^3\,KN/m^2$. $_{14M}$

UNIT-V

 State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.
 14M

OR

10. Determine the ratio of buckling strengths of two columns one hollow and the other solid. Both are made of the same material and have the same length, cross sectional area and end conditions. The internal diameter of hollow column is 2/3rd of its external diameter.

	H	fall Ticket Number :	
	C	ode: 7G533	
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
		Basic Thermodynamics	
		(Mechanical Engineering)	
		Aax. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	Marks
1.	a)	Explain Quasi-static reversible process with the help of a suitable example.	7M
	b)	A mass of gas is compressed in a quasi-static process from 80 kPa, 0.1 m ³ to 0.4 MPa, $0.03m^3$. Assuming that the pressure and volume are related by $pv^n = constant$, find the work done by the gas system.	7M
		OR	
2.	a)	Write short notes on (i) Zeroth law of Thermodynamics. (ii) First law of Thermodynamics.	8M
	b)	Prove that Internal energy is a property of the system.	6M
_		UNIT–II	
3.		Prove Maxwell Equations and derive two Tds equations	14M
4.		OR A reversible heat engine operates between two reservoirs at temperatures700°C and 50°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 50°C and -25 °C. The heat transfer to the engine is 2500 kJ and the network output of the combined engine refrigerator plant is 400 kJ. (i) Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir at 50°C; (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 45 per cent of their maximum	
		possible values.	14M
5	a)	UNIT–III What is a pure substance? Draw and explain P-T diagram for pure substance.	6M
5.	b)	Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when	OIVI
	5)	(i) Its quality is 0.8.(ii) it is dry saturated. (iii)Superheated the degree of superheat being 65 $^{\circ}$ C. OR	8M
6.	a)	Derive Clausius-Clapeyron equation.	7M
	b)	Draw a neat sketch of throttling calorimeter and explain how dryness fraction of steam is determined; clearly explain its limitations.	7M
-	-)		
1.	a)	Explain Vander wall's equation of state and derive the constants for the equation. OR	14M
8.	a)	0.3 m ³ of air at pressure 8 bar expands to 1.5 m ³ . The final pressure is 1.3 bar. Assuming the expansion to be polytropic. Calculate the heat supplied and change of internal energy.	714
	b)	Assume =1.4 Derive the expressions for heat transfer and work done during a reversible isothermal	7M
	0)	process.	7M
•	、		
9.	a)	The following volumetric composition relate to a mixture of gases: - N2=81%, CO2=11%, O2=6%, CO=2% Determine i) the gravimetric composition. ii) Molecular weight and iii) Universal gas constant R for the mixture.	10M
	b)	Explain briefly about Dalton's law of partial pressures.	4M
		OR	
10.		Write a short note on the Gravimetric Analysis.	7M
	b)	State Avogadro's law of Additive volumes.	7M

Hall Ticket Number :			
Code: 7GC32		R-17	
	ester Supplementary Exa	minations Nov/Dec 2022	
	Engineering Mathem	atics-III	
	(Common to All Brand	ches)	
Max. Marks: 70		Time: 3 Hou	rs
Answer any five full ques	tions by choosing one questions	on from each unit (5x14 = 70 Marks	5)
			Marks
	UNIT–I		
`		dy	

- 1. a) Using Taylor's series method, compute the value of y at x=0.2 from $\frac{dy}{dx} = x + y$; y(0) = 1. 7M
 - b) Using the bisection method, find a real root of the equation $\cos x = x e^x$ correct to three 7M decimal places.
- Solve $y' = y^2 + x$, y(0) = 1. Using Taylor's series Method, Compute y(0.1), y(0.2)2. 14M and y(0.3).
- 3. a) The following table of values of x and y is given.

x	0	1	2	3	4	5	6
У	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

UNIT-II

OR

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x=6

b) Using Lagrange is interpolation formula find the value of f(10) from the following table

x	5	6	9	11
у	12	13	14	16
		•		

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1 from the following table. 4.

Х	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031	14N
			UN	IIT–III				

5. a) Fit a straight line y = a + b x to the data by the method of least squares

х	0	1	3	6	8
у	1	3	2	5	4

b) Form the partial differential equation by eliminating a, b from $a x^2 + b y^2 + z^2 = 1$ 7M

OR

6. a) Fit a curve $y = a e^{b x}$ to the following data by the method of least squares

х	0	1	2	3
у	1.05	2.10	3.85	8.30

b) Form a partial differential equation by eliminating arbitrary functions the from z = f(x+at) + g(x-at). 7M

7M

7M

OR

7M

7M

7M

UNIT–IV

- 7. a) Express f(x) = x as half range sine in 0 < x < 2
 - b) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$ 7M

OR

8. a) Obtain the Fourier series for
$$f(x) = \left(\frac{f-x}{2}\right)^2$$
 in $0 < x < 2f$ 7M

b) Find the half range cosine series for f(x) = x(2-x) in $0 \le x \le 2$ and hence find prove

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
 7M

9. a) Find the Fourier cosine transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 2 \end{cases}$

b) Find the finite Fourier sine and cosine transforms of f(x) defined by

$$f(x) = \begin{cases} 1, 0 < x < \frac{f}{2} \\ -1, \frac{f}{2} < x < f \end{cases}$$
 7M

OR

- 10. a) Find the Fourier sin and cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$
 - b) Find the Fourier Transform of $f(x) = \begin{cases} a^2 x^2, & \text{if } |x| < a \\ 0 & \text{if } |x| > a > 0 \end{cases}$, and hence show that

 $\int_{a}^{a} \frac{\sin x - \cos x}{x^3} dx = \frac{f}{4}.$ 7M ***