Code: 7GC32

|| B.Tech. I Semester Supplementary Examinations February 2022

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ determine $y(0.1)$ correct to four decimal places.
b) Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

OR

2. Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

UNIT-II

3. a) Using Newton's forward interpolation formula and the given table of values

X	1.1	1.3	1.5	1.7	1.9
$F(x)$	0.21	0.69	1.25	1.89	2.61

Obtain the value of $f(x)$ when $x=1.2$
b) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

OR

4. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=6$

UNIT-III

5. Form the partial differential equation by eliminating the arbitrary constants $x^{2}+y^{2}+(z-c)^{2}=a^{2}$
6. a) Form a partial differential equation by eliminating the arbitrary functions from $z=f(x+a t)+g(x-a t)$.
b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$

UNIT-IV

7. a) Find the Fourier series to represent $f(x)=\pi x$ in $0 \leq x \leq 2$
b) Find the half range cosine series for the function $f(t)=t-t^{2}$, in $0<t<1$

OR

8. a) Find the Fourier series to represent $f(x)=|x|$ when $-\pi<x<\pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
b) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. a) Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.
b) Find the Fourier transform of $f(x)$ given

$$
\text { by } f(x)=\left\{\begin{array}{l}
1, \text { for }|x|<1 \\
0, \text { for }|x|>1
\end{array} \text { hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} d x\right.
$$

OR

10. Find the finite Fourier sine and cosine transforms of $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{c}
1,0<x<\frac{\pi}{2} \\
-1, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

\square

Code: 7G333

|| B.Tech. I Semester Supplementary Examinations February 2022

Signals and Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Define Fourier series of signal $f(t)$.Derive the Relationship between various types of Fourier
series representation
b) Differentiate clearly between the even, odd and half wave symmetry waveforms with respect
to their Fourier coefficients (use appropriate waveform) in their Fourier series representation
OR
2. a) Write the Classification of systems based on certain properties.
b) Determine whether the following signals are energy signals or power signals and calculate their energy or power

$$
\begin{array}{ll}
\text { i) } x(n)=\left(\frac{1}{2}\right)^{n} u(n) & \text { ii) } x(t)=\cos ^{2} \omega_{0} t
\end{array}
$$

UNIT-II

3. a) State and prove Differentiation and integration properties of Fourier Transform.
b) What is the Significance of Hilbert Transform? Explain 7M

OR

4. a) Find the Fourier transform of DC Signal
b) State and prove Time Convolution property of Fourier Transform. 7M
UNIT-III
5. a) Prove that bandwidth and rise time of an LTI system are inversely proportional to each other.7M
b) Discuss the conditions for distortionless transmission. 7M
OR
6. a) The output response of a continuous time LTI system is $2 \mathrm{e}^{-3 \mathrm{t}} u(t)$ when the input $\mathrm{x}(\mathrm{t})$ is $\mathrm{u}(\mathrm{t})$ 7M find the Transfer function.b) Determine whether the following systems are Linear or Nonlinear, Shift variant or Invariant,7MCausal or Non-causal, Stable or unstable. (i) $y(t)=x(t+10)+x 2(t)$ (ii) $d y(t) / d t+10 y(t)=x(t)$
UNIT-IV
7. a) Derive the relation between PSDs of input and output for an LTI system 7M
b) State and prove any four properties of Cross correlation function 7M
OR
8. a) State and explain Parseval's theorem. 7M
b) Explain about the properties of LTI system 7M
UNIT-V9. a) Find the Laplace transform of the signal $x(t)=e^{-a t} u(t)+e^{-b t} u(t)$7M
b) Explain the Concept of region of convergence (ROC) for Laplace transforms 7M
OR
9. a) Prove the differentiation property of Z-transform. Explain the concept of ROC in Z transform 7M
b) Give the relationship between z-transform ,Fourier transform and Laplace Transform 7M

Code: 7G332

|| B.Tech. I Semester Supplementary Examinations February 2022

Digital Design
 (Electronics and Communication Engineering)
 Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Max. Marks: 70

UNIT-I

1. a) Write a short note on logic gates and their truth tables 10M
b) List out the properties of XOR gate 4M

OR

2. a) Represent $+25,-25$ and -52 in 1's and 2's compliment forms
b) State and prove the De-Morgan's theorems 7M

UNIT-II

3. a) What is meant by Don't care combinations and simplify the given Boolean function (F) together with the Don't cares (d) $F(x, y, z)=\sum(0,1,2,4,5)+d(3,7)$
b) Simplify the given Boolean function and realize using NOR gates.
$F(a, b, c, d)=\sum(1,3,5,7,9,11,13)$
OR
4. a) Define prime implicants, essential prime implicants and selective implicants 8 M
b) Differences between canonical and standard form of Boolean functions 6M

UNIT-III

5. a) Implement given function using 8×1 multiplexer $\mathrm{F}=\Sigma(0,1,5,6,7)$ 7M
b) Design a circuit which convert given 4-bit gray code to binary code

OR

6. Implement given functions using PAL
$\mathrm{F} 1(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(1,2,3,4) \quad \mathrm{F} 2(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(1,3,5,7) \quad \mathrm{F} 3(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(0,5,6,7)$

UNIT-IV

7. a) Compare synchronous and asynchronous circuits 6M
b) Define excitation table, state table and state diagram 8 M

OR
8. a) With a neat diagram explain operation of 4-bit UP/DOWN counter 10M
b) Explain various triggering methods 4M

UNIT-V
9. a) List out the salient features of the ASM chart 8 M
b) Draw the ASM chart for MOD-3 counter 6M

OR
10. Determine a minimal state table equivalent to the given state table using partition technique method

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
1	1,0	1,0
2	1,1	4,1
3	4,0	5,0
4	1,1	5,0
5	2,0	3,0

Code: 7G234

II B.Tech. I Semester Supplementary Examinations February 2022
Electrical Circuits and Technology
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Determine the current i in the network shown in the figure below:

b) Determine the loop currents using Mesh Analysis and also the branch voltages

OR

2. a) Explain Current \& Voltage Division Rules with examples.
b) Determine the current supplied by the voltage source when the circuit shown below is excited by 20 V across the terminal AB .

UNIT-II

3. a) Define Resonant frequency, Band Width \& Q-Factor
b) An RLC circuit has $\mathrm{R}=1 \mathrm{~K}, \mathrm{~L}=100 \mathrm{mH}$ and $\mathrm{C}=10 \mathrm{pF}$. If a voltage of 100 V is applied across the series combination, determine (i) resonant frequency (ii) Q factor and (iii) half power frequencies
4. a) Find the power delivered and current from a sinusoidal voltage source with $\mathrm{V}=220 \mathrm{~V}$ to an impedance of $\mathrm{Z}=(6+j 8)$ 6M
b) Explain about different Types of Wave Forms and also Importance of Sinusoidal Wave Form. 8M
UNIT-III
5. Explain with defining equations about (i) y-parameters; (ii) z- parameters; (iii) ABCD-parameters; (iv) h-parameters. 14M
OR
6. a) What are the transmission parameters? Deduce the relation $A^{2}-B C=1$ for a symmetrical and reciprocal four terminal network. 7M
b) The z parameters of a symmetrical four terminal network are $z_{11}=z_{22}=20$ and $z_{12}=z_{21}=5$. Find the ABCD parameters of the network 7M
UNIT-IV
7. a) Describe the principle of operation of a dc generator? 7M
b) A 2 pole lap wound generator has 200 conductors on armature. It is driven by prime mover at a constant speed of 600 rpm . If the flux per pole is 0.1 Wb , calculate the generated emf. 7M
OR
8. a) Explain the speed-torque characteristics of dc shunt and dc series motors 8M
b) Explain the various losses which take place in a dc machine. 6M
UNIT-V
9. a) Explain in detail the construction of a 3-phase induction motor specifying in detail the squirrel cage and slip ring motor construction. 10M
b) Write the principle of Induction motor. 4M
OR10. a) Explain with the help of suitable diagram how the rotating magneticfield is produced in a three phase motor?10M
b) What is the relationship between the supply frequency number of poles and synchronous speed? 4M
