Code: 7GC32

II B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Use Milne's method to find $y(0.3)$ from $y^{\prime}=x^{2}+y^{2} y(0)=1$. Find the intial values $y(-0.1), y(0.1), y(0.2)$ from the Taylors series method.

OR
2. Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

UNIT-II

3. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=6$

OR

4. Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula.

x	20	25	30	35	40	45
y	354	332	291	260	231	204
UNIT-III						

OR

6.

Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$

UNIT-IV

7. Find the Fourier series to represent $f(x)=|x|$ when $-\pi<x<\pi$ and deduce that

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}
$$

8. Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. If $F(s)$ is the complex Fourier transform of $f(x)$ then prove that

$$
F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right), a \neq 0
$$

OR

10.

Find the Fourier transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}, m>0$

Code: 7G333
II B.Tech. I Semester Supplementary Examinations March/April 2023
Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. a) Obtain the expressions to represent trigonometric Fourier coefficients in terms of
exponential Fourier coefficients.
b) $\begin{aligned} & \text { Define Fourier series of signal } f(t) \text {. Derive the Relationship between various types of } \\ & \text { Fourier series representation } \\ & \text { 2. a) } \\ & \\ & \text { Find the even and odd components of the following signal } \\ & x(t)=\operatorname{cost}+\sin t+2 \operatorname{sint}+4 \operatorname{cost}\end{aligned} \quad 7 \mathrm{M}$
b) Determine whether the following signals are periodic or not? If periodic determine fundamental period.
i) $\cos t+\sin \sqrt{2} t \cos t$ ii) $2 \cos 100 \pi t+5 \sin 50 t$

UNIT-II

3. Define Fourier transform. Explain the properties of Fourier transform

OR

4. a) Obtain the Fourier transform of a periodic train of impulses with period T .
b) Obtain the Fourier transform of the following functions.
i) Unit step function ii) Unit impulse function

UNIT-III
5. a) What is the impulse response of two LTI systems connected in parallel?
b) Explain the Filter characteristics of linear systems

OR

6. a) Explain the difference between the following systems.
i) Linear and non-linear systems. ii) Time variant and time invariant systems
b) Discuss the conditions for distortionless transmission.

UNIT-IV

7. a) Explain the relation between convolution and correlation.
b) Derive the relation between PSDs of input and output for an LTI system

OR

8. a) With an example explain the Graphical representation of convolution. 7M
b) Prove that auto correlation function and energy/power spectral density function forms Fourier Transform pair.

UNIT-V

9. a) Derive the relation between Z transform and Fourier transform
b) Discuss any 3 properties of Laplace transform.

OR

10. a) Prove the differentiation property of Z-transform. Explain the concept of ROC in Z transform
b) Give the relationship between z-transform ,Fourier transform and Laplace Transform

Code: 7G331
II B.Tech. I Semester Supplementary Examinations March/April 2023
Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Consider a single Stage CE Amplifier with $\mathrm{Rs}=1 \mathrm{~K}, \mathrm{R}_{1}=50 \mathrm{~K}, \mathrm{R}_{2}=2 \mathrm{~K}, \mathrm{Rc}=2 \mathrm{~K}$, hfe=50, hie $=1.1 \mathrm{~K}$, hoe $=25 \mu \mathrm{~A} / \mathrm{V}$ and $\mathrm{hre}=2.5 \mathrm{X} 10-14$. Find Ai!, Ri!, $A V!$, $A i=I / / l_{\mathrm{s}}$, $\mathrm{AVS}=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$.

OR

2. a) Derive the expressions of Millers theorem and its dual.
b) Draw and explain the circuit of cascaded amplifier and mention the advantages

UNIT-II

3. a) What is the significance of 3 dB bandwidth?
b) Explain the frequency response of amplifier at Low, Mid and High frequencies

OR

4. a) A BJT has the following parameters measured at ic=1mA, hie $=3 \mathrm{~K}$, hfe=500, $\mathrm{FT}=4 \mathrm{MHz}, \mathrm{Cc}=2 \mathrm{pF}, \mathrm{Ce}=18 \mathrm{pF}$. Find rble, gm, rce and fH for RL=1K
b) The following low frequency parameters are known for a given transistor at room temperature $(3000 \mathrm{~K})$ at $I C=10 \mathrm{~mA}$ and VCE $=8$ volts: hie $=500$, hoe $=2 \times 10^{-4} \mathrm{~S}$, hfe $=100$ and hre $=10^{-4}$. At the same operating point, $\mathrm{fT}=50 \mathrm{MHz}$ and $\mathrm{Cob}(\mathrm{Cc})=3 \mathrm{pF}$. Calculate the values of hybrid- parameters.

UNIT-III

5. When the negative feedback is applied to an amplifier of gain 100, the overall gain falls to 50 . Calculate (i) the feedback factor β (ii) if the same feedback factor maintained, the value of the amplifier gains required if the overall gain is to be 75 .

OR

6. Derive the expression for input impedance and output impedance for the current series and current shunt feedback amplifiers.

UNIT-IV

7. a) List out the types of oscillators.
b) With neat diagram explain about amplitude stability of oscillators.

OR

8. a) What are the features and advantages of crystal oscillator?
b) With neat diagram explain about frequency stability of oscillators.

UNIT-V

9. a) Explain crossover distortion in Class B power amplifier
b) What is Q Factor? Write about unloaded and loaded Q in tuned circuit.

OR

10. Draw and explain class B push pull amplifier. Show that in class B push pull amplifier the maximum conversion efficiency is 78.5%.
