Code: 70224	R-17
Code: 7G234	
II B.Tech. I Semester Supplementary Examinations May	2019
Electrical Circuits and Technology	
(Electronics and Communication Engineering)	
Max. Marks: 70	Time: 3 Hours
Answer all five units by choosing one question from each unit (5 x 14 =	= 70 Marks)
UNIT–I	
1. a) Explain in detail Y- and -Y Transformation and derive the corre	esponding
formulae	8N

b) Use nodal analysis to find the power dissipated in the 6 resistor for the circuit shown in figure below.

Hall Ticket Number :

OR

- 2. a) By taking one example explain super node analysis in detail
 - b) Derive an expression for current in terms of steady state and transient parts for R-L series circuit excited by a DC voltage source. Also find the voltage across resistor and inductor. 7M

UNIT-II

3. a) Derive an expression for resonant frequency of a parallel circuit, one branch consists of a coil of inductance L henrys and resistance R and other branch consists of a capacitor C farads. b) Find the average value, effective value, form factor, peak factor for half wave rectified voltage waveform such that For 0< wt < , V=VmSinwt < wt < 2 , V = 0. The period is 2 7M For

OR

- 4. a) Find the average value, effective value, form factor and peak factor for the square waveform such that For 0 < t < 0.01, Y=10 For 0.01 < t < 0.03, Y =0. The period is 0.03 Sec
 - b) A Coil of resistance 50 and inductance of 0.5H is connected in parallel with a capacitor of 100µF.Calculate the frequency at which the circuit acts as a non-inductive resistance. Calculate the value of non-inductive resistance 7M

6M

7M

7M

7M

8M

6M

7M

7M

UNIT–III

- 5. a) Derive the relations for expressing impedance parameters in terms of Y-parameters.
 - b) Find the transmission parameters for the circuit shown in figure below.

OR

6. a) Explain series and parallel interconnection of two port networks.

b) Find the h-parameters of the network shown below.

UNIT–IV

7. a) Explain in detail the constructional features of a DC machine. 6M b) A 4 pole DC shunt generator with lap connected armature supplies a load of 100A at 200V. The armature resistance is 0.1 and shunt field resistance 80 . Find (i) Total armature current (ii) Current per armature path. (iii) emf 8M generated OR 8. a) Derive the torque equation of a DC motor. 7M b) Explain in detail the characteristics and applications of a DC motor. 7M UNIT-V 9. a) Derive an expression for induced emf in a single phase transformer. 7M Discuss various losses occur in the transformer also write the expression for b) regulation and efficiency of transformer. 7M OR 10. a) Explain the principle of operation of three phase induction motor. 7M

b) Derive the torque equation of a three phase induction motor 7M

Hall	Ticke	et Number :								
Code		R-17								
Code	. /0	II B.Tech. I Semester Supplementary Examinations May 2019								
		Electronic Circuits								
Мс	ıx. №	(Electronics and Communication Engineering) Marks: 70 Time: 3 I	Hours							
	Ans	swer all five units by choosing one question from each unit (5 x 14 = 70 Marks	5)							
		UNIT–I								
1.	a)	Draw the small signal hybrid equivalent model of a transistor. Derive the expressions for A_I , Z_i , Av and Y_o .	8M							
	b) A CE amplifier is drawn by a voltage source of internal resistance $R_s = 800$									
		and the load impedance is a resistance $R_L = 1000$. The h-parameters are $h_{fe} = 50$, $h_{ie} = 1 \text{ k}$, $h_{oe} = 25 \ \mu\text{A/V}$ and $hre = 2 \text{ x} 10^{-4}$. Calculate A_i , A_v , Z_i and								
		Z_0 using exact analysis.	6M							
		OR								
2.		Draw the circuit diagram of two stage RC coupled transistors amplifiers.								
		Explain the operation and calculate the mid frequency range and low frequency range.	7 14M							
		UNIT-II								
3.		Determine high frequency parameters of Hybrid - model in terms of low								
		frequency parameters. OR	14M							
4.	a)		7M							
	b)	Derive the expression for CE Short circuit current gain with the help of								
		necessary circuit diagrams and approximations. 7N								
_		UNIT-III								
5.	a)	Derive the expression for feedback gain, input resistance and output resistance for voltage series feedback amplifier.	t 8M							
	b)	A voltage series negative feedback amplifier has a voltage gain without feedback of A=50, input resistance $R_i= 2K$, output resistance $R_o= 15K$ and feedback ratio of 0.01. Calculate the voltage gain, input resistance and output resistance of the amplifier with feedback?	l							
		OR	•							
6.	a)	Prove that negative feedback increases the bandwidth and decreases the distortion.	7M							
	b)									
		without feedback. Determine the amplifier voltage gain f_{1f} , f_{2f} and D_f when a negative feedback is applied with feedback ratio of 0.01.	1 7M							
7.		UNIT-IV	8M							
7.	a) b)									
	0)	inductance. Determine the range of inductance values, if the frequency of								
		oscillation is varied between 950 KHz and 2050 KHz.	6M							
0		OR Classifi - uprious turnes of easillators. Explain in brief	CM I							
8.	a) b)	Classify various types of oscillators. Explain in brief. Show that the gain of Wein-bridge oscillator using BJT amplifier is at least 3	6M							
	D)	for oscillations to occur.	, 8M							
9.	a)	UNIT-V Show the conversion efficiency of transformer coupled class A amplifier is 50%.	8M							
÷.	۵) b)	Explain the operation of Class B push pull amplifier.	6M							
	,	OR								
10.		Describe the operation of a single tuned capacitive coupled amplifier and derive the expression for bandwidth.	l 14M							

Hall	Tick	et Number :	_
Code:	7G(C31 R-17	
couc.		I B.Tech. I Semester Supplementary Examinations May 2019	
		Environmental Science	
		(Electronics and Communication Engineering)	
		rks: 70 Time: 3 Hour	S
Ar	nswe	er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.	a)	What is the need for mass public awareness concerning environmental safety	
		and what are the steps regarding the same.	7M
	b)	What are environmental studies and Why is it interdisciplinary	7M
		OR	
2.	a)	How nature is productive to human welfare and in what ways.	7M
	b)	Comment on various people who contributed to the welfare of environment	7M
0	,		
3.	a)	Explain with relevant examples on Human Development Index.	7M
	b)	Explain the over exploitation of forest resources and its effect on the environment	7M
4		OR	714
4.	a) b)	Write a detailed note on water resources.	7M 7M
	b)	Write a note on Sustainable water management.	7M
5.	a)	UNIT–III Explain food chains, food webs and ecological pyramids.	7M
5.	b)	What is a forest ecosystem and explain the various features.	7M
	0)	OR	7 101
6.	a)	What are the threats of the forest eco-system	7M
01	⊆, b)	Explain aquatic eco system.	7M
	,		
7.	a)	What are the various types of pollution and causes of it?	7M
	b)	Explain the fate of the pollutants discharged to the atmosphere.	7M
		OR	
8.	a)	Explain greenhouse effect.	7M
	b)	What are the measures taken to control air pollution?	7M
		UNIT–V	
9.	a)	Explain Watershed Management	7M
	b)	Write a note on environmental ethics.	7M
		OR	
10.	a)	Write a note on ozone layer depletion	7M
	b)	What is wasteland reclamation? Write briefly about it.	7M

Hall	Tic	ket Number :													1
Code	e: 7	G333	1				1			J		J]	R-17	
		ll B.Tech. I	Sem	neste		• •			•		nina	tion	s May	/ 2019	
		(F	lactr	ronic		-			yste		nain	oori			
(Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********															
								UN	IT–I						
1.	a)		ence	prov	e tha			-		-				be orthogonal to to each other for	7M
	 b) Derive the necessary expression to represent the function f(t) using Trigonometric Fourier Series 										7M				
OR															
2.	a)	Compute the F	ourie	r Tra	nsfor	m of	i) f(t)	= (1/	2) - n	u(-n-	1) ii)	f(t) =	sin (n	/2)+cos (n)	8M
	b)	State and prove sampling theorem for band limited signals using graphical approach. And What is aliasing? Explain its effect on sampling. 0 UNIT-II										6M			
3.	a)	Find the Fourier transform of a gate pulse of unit height, unit width and centered at										7M			
	b)	Determine the by y (t) = $e^{-2 t }$						de an	d pha		•		whose	function is given	7M
4.	2)	Find the Fouri	or Tr	onof	orm o	sf (i) '	Trion	0		o wit		ind T	00/	ec and amplitude	
4.	a)	A = 10V. (ii) O				• • •		iyulal	puis		n hei	iou i	= 036		8M
	b)	What is aliasir	ng? E	xplai	n its	effec		samp NIT–							6M
5.	a)	What are the signal?	requ	ireme	ents (ofa	syste	em to	allov	v the	disto	ortion	less t	ransmission of a	7M
	b)	What is the in convolution In	•		•				syste	ems	conn	ecteo	d in pa	rallel? State the	7M
									R						
6.	a)		d the	freq	uenc	y res	spons	se &	Impu	lse re	•		• •)/dt ² +6 dy(t)/dt+8 ourier transform.	8M
	b)	Find the impu properties	ılse r	espo	onse	of se	eries	RL c	ircuit	. Wh	at is	an L	TI sys	tem? Explain its	6M
								NIT-							
7.	a)	Find the conv and h(t) = u(t -		on of	the f	ollow	/ing s	signa	ls usi	ng g	raphi	cal a	nalysis	$x(t) = e^{-2t} u(t)$	7M
	b)	Show that the function.	e aut	:0-COI	rrelat	ion f	uncti	on a	t the	origi	n is	equa	al to th	e energy of the	7M

Code: 7G333

7M

7M

7M

OR

8. a) Show that the cross correlation of f(t) with (t - t₀) is equal to f(t - t₀). Where (t-t₀) is delayed unit impulse function.
 7M
 Prove that auto correlation function and energy/power spectral density function forms

b) Fourier Transform pair.

- UNIT–V
- 9. a) Find the Inverse Z transform of

$$X(z) = \frac{z+2}{4z^2 - 2z + 3} |Z| < \sqrt{3/4}$$

b) Find inverse Z-transform of $X(Z) = (1 - 1/3z^{-1})(1 - 1/6z^{-1})ROC: |Z| > 1/3$

OR

- 10 a) Determine the inverse Laplace of the following functions *i*) 1/s(s+1)(s+3) *ii*) $3s^2 + 8s + 6/(s+8)(s^2+6s+1)$ 8M
 - b) Find out the Laplace transform of the signal shown in below figure.

	Ticket Nur	mbori									
										R-17]
Code	: 7GC32 II B Te	ch. I Semes	ster Su	opleme	entar	v Fxar	mina	tions	Mav 2	019	-
	1 0.10		-	ring M						.017	
			•	imon to							
	. Marks: 70				antian	frama		unit (E		Time: 3 Hours	
4		ve units by cł	loosing	one qu	*****	nome	acht	uni (S	x 14 –	/ U Marks j	
				U	I-TIV						
1. a)	Find a re	al root of the	equation	on $x^3 - 2$	2x - 5 =	0 usir	ng bis	ection	metho	d correct to	
three decimal places.										7M	
b)	Find the	real root of th	e equat	tion sin ²	x + 1 =	x^2 usin	g Nev	wton-R	aphso	n method.	7M
					OR						
2. a)	Employ I	Euler's metho	od to o	btain th	e app	roxima	te va	lue of	yat x	=1.0 for the	
	differenti	al equation $\frac{d}{d}$	$\frac{y}{y} - r - y$	$y^2 y(0)$	-1						
	uncrentia	d	$\int x^{-x}$, , , (0)	-1.						7M
b)	Apply Ru	unge-Kutta n	nethod	of orde	er 4, o	compu	te y(0.2) <i>an</i>	d y(0.4) from the	
	equation	$\frac{dy}{dx} = x + y, \ y$	(0) = 1.								7M
				UN	IIT–II						
3. a)	The popu	ulation of a to	wn in th	e decer	nial ce	ensus	was g	iven b	elow		
		Year :	x	1891	190	1 19	11	1921	1931	I	
		Populatio	•	46	66	8	1	93	101		
		(in thousa	/								714
		the populatio		-							7M
b)	-	ange's interp	olation	formula	to find	the va	lue of	fywh	en x = 3	3.5 from the	
	following	table									
			<i>x</i>	0	1	3	4	_			
			У	-12	0	12	24				7M
					OR						

4. a) Find the first and second derivatives of the function tabulated below at the point x = 1.5

x	1.5	2.0	2.5	3.0	4.0	
у	3.375	7.0	13.625	38.875	59	7M

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using

(i)Trapezoidal rule (ii)Simpson's $\frac{1}{3}$ rule and (iii)Simpson's $\frac{3}{8}$ rule with h = 0.5 and 0.125 7M

7M

7M

UNIT–III

5. a) Determine the values of *a* and *b* by the method of least squares such that $y = ae^{bx}$ fits the following data

x	2	4	6	8	10	
У	4.077	11.084	30.128	81.897	222.62	7M

b) Solve $(p^2 + q^2)y = qz$ using Charpit's method.

\mathbf{n}	n
J	ĸ
-	•••

6. a) Fit a second degree polynomial to the following data by the method of least squares

x	10	12	15	23	20
у	14	17	23	25	21

b) Using the method of separation of variables,

solve
$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$
, when $u(0, y) = 8e^{-3y}$

7. Prove that $x^2 = \frac{f^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, -f < x < f by using Fourier series and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{f^2}{6}$ 14M

OR

8. Obtain a half range cosine series for $f(x) = \begin{cases} kx, 0 \le x \le l/2 \\ k(l-x), l/2 \le x \le l \end{cases}$

and deduce the sum of the series is
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{f^2}{8}$$

UNIT-V

9. Find the Fourier sine and cosine transforms of $e^{-ax}(a > 0)$. Hence Evaluate the integrals $\int_{0}^{\infty} \frac{x \sin x}{x^{2} + a^{2}} dx$ and $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx$ 14M

OR

10. Obtain the Fourier sine transfromation of

$$f(x) = \begin{cases} 4x, & \text{for } 0 < x < 1\\ 4-x, & \text{for } 1 < x < 4\\ 0, & \text{for } x > 4 \end{cases}$$
14M

На		cket Number]		
										<u></u>				R-17	
Cod	e: 7	G332 II B.Tech. I	Som	octo	r Su	nnle	me	ntar		ami	inati	ions	Ma	L	
			5011	0310				Desi		ann	nun	10113	may	2017	
		(E	lectro	onics		-			-	n En	gine	erin	g)		
Ма		arks: 70									-			Time: 3 Hc	ours
	Ans	wer all five ur	its by	choc	osing		9UE ****		fron	nea	ch ui	nit (5	5 x 14	= 70 Marks)	
							U	INIT-	l						
1.	a)	Convert the	ollowi	ng nu	umbe	ers:									
		., .	(i) (7562.45) ₁₀ to octal												
		., .	75.175			•			. 1						
	b)	., .	10101							(0 m n		of a al	foor	nlomonting	6M
	b)	Define a sel codes and e				-	-		ie ex	amp	les c	JI Sei	I CON	ipiementing	8M
			1					OR							
2.	a)	(i) Using 10 ³	s com	plem	ent, s	subtr	act 7	2532	2-325	50					
		(ii) Using 2's	•		•										
		(iii) Convert		•											6M
	b)	Give the exa	mples	of no	on-w	eight				expla	ain al	bout	Hamr	ning code	8M
3.	a)	Reduce the	مالميرنا	na Br	مامد			NIT-		o ind	dicate	ad ni	imboi	of literals	
5.	a)		C' + A	-			pies			litera		Sunt	IIIDEI		
		()	y' + z)	-	_	+ wz	2								
		(iii) A	B(D' +	C'D)) + B	(A +	A'CE)) 1	to on	e lite	ral				9M
	b)	Using K-map			•	•			-	ariab	le fu	nctio	n		
		F(A,B,C,D) =	(0,	2, 4,	5, 6	7, 8			5)						5M
4	-)		£ - 11			f.		OR				- 4			
4.	a)	Simplify the with NAND of		ing E	sooie	an ti	Incti	on us	sing	к-ma	ap m	etho	a and	Implement	
		F(w,x,y,z) =		'xy' +	- wxy	' + w'	yz +	wy'z							6M
	b)	Simplify the	ollowi	ng Bo	oolea	an fur	nctio	n usii	ng ta	bulat	ion r	netho	bd		
		F(A,B,C,D) =	(0,	1, 2,	5, 7	8, 9	, 10,	13, 1	5)						8M
								NIT-I							
5.	a)	Implement a operation of									e OR	gate	e and	explain the	7M
	b)	Explain 3 x 8					•								7M
	0)		ucco				•	OR		C					7 101
6.	a)	Write short r	otes o	n											
		(i) R	DM												
		()	ROM		_										6M
	b)	Implement th		-		lean	func	tions	with	PAL					
		w(A, B, C, D x(A, B, C, D)			,	11 ·	12 1	3.14	. 15)						
		y(A, B, C, D)	•												
		z(A, B, C, D)					, - ,	, -	, .	,					8M

UNIT–IV

- Draw the logic circuit of SR Flip-Flop and explain its operation with the help of its truth table
 6M
 - b) Draw the diagram for 4-bit up-down counter and explain its operation 8M

OR

- 8. a) Draw the excitation table and write the characteristic equation of SR Flip-Flop and JK Flip-Flop
 - b) Explain the operation of Johnson counter with the help of neat diagram

UNIT-V

9. a) Minimize the following machine using partition technique and draw its reduced state table

Present State	Next State, output(z)							
Fresent State	x = 0	x = 1						
А	E, 0	C, 0						
В	C, 0	A, 0						
С	В, 0	G, 0						
D	G, 0	A, 0						
E	F, 1	В, 0						
F	E, 0	D, 0						
G	D, 0	G, 0						

b) Explain the basic building blocks of ASM chart

8M 6M

6M

6M

8M

OR

- 10. a) Design a sequence detector to detect the binary sequence 1111 using T Flip-flop 8M
 - b) Explain the salient features of ASM chart
