	Cod	le: 7GC32	
	Cou	II B.Tech. I Semester Supplementary Examinations June 2024	
		Engineering Mathematics-III	
		(Common to All Branches)	
		Itime: 3 Hours wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	Ans		
		UNIT–I	
۱.	a)	Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, $y(0) = 1$ determine $y(0.1)$	
	,		71
	b)	correct to four decimal places. Find a real rest of the equation $3x = 200 \text{ m} + 1 \text{ hy}$ Newton Dephase's method correct to	71
	5)	Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places.	71
		OR	71
2.		Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2 y(0) = 1$. Find the initial values	
		y(-0.1), y(0.1), y(0.2) from the Taylors series method.	
			141
3.	a)	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by Simpson's 1/3 rule.	
			71
	b)	Using Lagrange formula find $f(4)$. Given	
		x 0 2 3 6	
		y -4 2 14 158	71
1.		OR	
τ.		Using Lagrange is interpolation formula find the value of $f(10)$ from the following table	
		x 5 6 9 11	1 4 1
		y 12 13 14 16 UNIT–III	141
5.		Form the partial differential equation by eliminating the arbitrary constants	
		$x^{2} + y^{2} + (z - c)^{2} = a^{2}$	141
		OR	1-11
5.		Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and	
		g(y) from $z = y f(x) + x g(y)$.	1 4 1
			141
7.		Find the fourier series expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce	
		that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$	141
		OR	
3.	a)	Find the Fourier series expansion for $f(x) = f - x$ in $0 < x < f$	71
	b)	Expand $f(x) = \cos x, 0 < x < f$ in half range sine series.	7
		UNIT–V	
).	a)	Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$	
			71
	b)	Find the Fourier sin and cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$	71
).			
		Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$, hence, derive the Fourier sine	
		transform of $W(x) = \frac{x}{1+x^2}$	