		Hall Ticket Number :	,
		R-17	
	C	Line 14 Il B.Tech. I Semester Supplementary Examinations August 2021	
		Digital Design	
		(Electronics and Communication Engineering)	
		Max. Marks: 70 Time: 3 Ho	
	/	Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark	s)
		UNIT–I	
1.	a)	Write a short note on logic gates and their truth tables	10
	b)	List out the properties of XOR gate	41
		OR	_
2.	a)	Convert BCD code to 5421 and 84-2-1 code	101
	b)	Why NAND and NOR gates are called as universal gates?	41
		UNIT–II	
3.	a)	Simplify the following Boolean expressions to a minimum number of literals	
5.	aj	i) ABC+A ^I B+ABC ^I	
		i) $(X+Y)^{i}(X^{i}+Y^{i})$	
		iii) X ¹ YZ+XZ	91
	b)	Realize XOR gate using NAND gates	51
	、	OR Obtain minimal companying the Kanan fan e siver Declars function E(A.D.C.D.)	
4.	a)	Obtain minimal expression using the K-map for a given Boolean function $F(A,B,C,D) = (0,2,8,10,12,13,14)$ and implement using basic gates	101
	ь)	what are the limitations of K-Map method	4
	b)		-11
		UNIT–III	
5.	a)	Realize full adder using two level basic gates.	71
	b)	with a neat diagram explain operation of 2-bit magnitude comparator	71
		OR	
6.	a)	Design 8-line –to-3-line encoder by using basic gates and explains basic operation of it	71
	b)	Realize full subtractor using half subtractors.	71
7	c)	UNIT-IV Differences between combinational and sequential circuits	61
7.	a) b)	With a neat diagrams explain the operation of Ring counter	81
	b)	OR	OI
0	c)		41
8.	a) Þ	Draw the logic diagram of LATCH using NOR and NAND gates	4N 1 ON
	b)	Design a circuit to Convert JK-FF to D-FF	101
		UNIT–V	
9.	a)	Discuss about the capabilities and limitations of FSM	81
	ري b)	compare Mealy and Moore machines	61
	~)	OR	
0.		Design a control circuit using D- FFs with one control input S. When X=0, the state of the	
		circuit remains the same. When S=1,the circuit goes through the state transition from 00 to	1 1 1

01 to 10 to 11 and repeats

14M

-	C	Il Ticket Number : R-17	
	Coc	le: 7G331 Il B.Tech. I Semester Supplementary Examinations August 2021	1
		(Electronics and Communication Engineering)	
	-	x. Marks: 70 Time: 3 Hours	
	Ans	wer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
•	a)	Compare the input impedance, output impedance and voltage gain of CE, CB and CC configurations. Why CE amplifiers are widely used?	
	b)	Draw the circuit diagram of a two stage RC coupled amplifier. Explain the need of using multi-stage amplifiers	
		OR Draw and explain the circuit of cascaded amplifier and mention the advantages	
•	a) b)	Draw the equivalent circuit of a CE amplifier using Millers theorem. What is the upper 3-dB	
	b)	frequency of such circuit?	
		UNIT–II	
		Explain the role of coupling capacitors and Bypass capacitors in a RC Coupled Amplifier Circuit.	
-		Draw the hybrid –pi model of BJT. Explain the circuit elements in this model.	
		UNIT-III	
•	a)	Explain the advantages of negative feedback over positive feedback.	
	b)	Briefly discuss about the effect of feedback on amplifier bandwidth	
		OR Explain the concept of feedback with block diagram	
•	a) b)	Explain the concept of feedback with block diagram Write about Classification of feedback amplifiers,	
	b)	while about Classification of reeuback amplifiers,	
		UNIT–IV	
•	a)	With neat diagram explain about amplitude stability of oscillators.	
	b)	Distinguish between various oscillators.	
		OR Why +ve feedback is generally used in oscillator circuits? Derive the oscillation frequency of	
		a RC Phase Shift Oscillator.	
		UNIT–V	
•	a)	Classify the power amplifiers.	
	b)	Explain crossover distortion in Class B power amplifier	
).		OR Explain in detail about complementary symmetry push pull amplifier.	
		Explain in uctail about complementary symmetry push pull amplifier.	

		Hall Ticket Number :			_
	L		R-1	7	
		Code: 7G234 Il B.Tech. I Semester Supplementary Examinations August 2	021		
		Electrical Circuits and Technology			
		(Electronics and Communication Engineering) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 *********	ime: 3) Mark		ſS
			Marks	СО	Blooms Level
1.	a)	UNIT-I Simplify the given network by using Y- transformation and obtain equivalent			
		resistance across X-Y terminals.			
		ו Sm 1			
		¥ 0	7M	004	L1
	b)	State and explain the Kirchhoff's Law which can be applied to loop current	7 101	CO1	LI
	- /	method.	7M	CO1	L2
	``	OR			
2.	a)	Obtain the single equivalent source network across the terminals A -B make use of source transformation technique			
		$1 A \bigoplus_{\leq 5 \Omega \\ \leq 2 \Omega \\ \leq 2 \Omega \\ \leq 2 \Omega \\ q \\$			
			7M	CO1	L3
	b)	Explain the series RLC circuits using differential equation approach for DC excitation.	7M	CO1	L2
3.	a)	Define following terms:			
	b)	i) RMS value ii) Average value iii) Peak factor iv) Form factorFor the periodic waveform given in below figure, find Average value and RMS	7M	CO2	L1
		value. $k + \frac{1}{T/2} + \frac{3T/2}{2T} + \frac{1}{T/2} + $	7M	CO2	L2
			Pa	ം 1 റf	2

4. A series-connected RLC circuit has R = 4 & and L = 25 mH.
(i) Calculate the value of C that will produce a quality factor of 50.
(ii) Find 1, 2, and Bandwidth.
(ii) Determine the average power dissipated at = 0, 1, 2.

Take *Vm* = 100 V.

b)

14M CO2 L3

7M CO3

L3

L2

5. a) Determine the Z-parameters and y-parameters of the below circuit.

UNIT-III

Determine hybrid parameters and draw the equivalent circuit of h-parameter. 7M CO3

OR

6. a) Find the transmission parameters for the two-port network shown below

		oo	7M	CO3	L3
	b)	Appraise the importance of cascaded connection of two port networks.	7M	CO3	L1
		UNIT–IV			
7.	a)	Deriving the necessary expressions, explain how to predetermine the efficiency of a d.c shunt motor by suitable test.	10M	CO4	L2
	b)	A d.c shunt motor takes 1.2A on no-load when connected to a 220 V d.c mains, with an armature resistance of 1.2 ohms when the field current is 0.7 A. Determine the load current corresponding to maximum efficiency of the motor.	4M	CO4	L3
		OR			
8.	a)	Explain in detail the constructional features of DC machine	7M	CO4	L2
	b)	Explain the speed control methods for DC motor.	7M	CO4	L1
		UNIT-V			
9.	a)	Draw and explain the constructional features of a single phase transformer. Also			
		discuss its operation with and without load.	10M	CO5	L3
	b)	Determine EMF equation of a Transformer.	4M	CO5	L2
		OR			
10.	a)	Describe construction and principle of operation of 3-phase squirrel cage induction motor.	7M	CO5	L3
	b)	Obtain the condition for maximum torque under running condition in induction motor.	7M	CO5	L1

Hall Ticket Number :						
	<u> </u>					R-17

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to All Branches)

Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********

UNIT–I

- 1. a) Using the bisection method, find a real root of the equation $\cos x = x e^x$ correct to three 7M decimal places.
 - b) Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, y(0) = 1 determine y(0.1) correct to four decimal places. 7M

OR

2. Find the real root of the equation $xe^x = 3$ by Regular-falsi method. 14M

UNIT-II

3. Using Lagrange formula find f(4). Given

х	0	2	3	6
у	-4	2	14	158
		OR		

4. Evaluate $\int_{0}^{1} \sqrt{1 + x^3} dx$ taking h = 0.1 Using (i) Simpson's 1/3 rd rule (ii) Trapezoidal rule.

UNIT-III

5. Fit a second degree parabola to the following data by the method of least squares

,		0	D		
V	14	17	23	25	21
х	10	12	15	23	20

6. Form a partial differential equation from z = f(x + y).

UNIT–IV

7. Obtain the Fourier series for $f(x) = x - x^2$ in the interval [-f, f]. Hence show that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
14M

- 8. Find the half range cosine series for the function $f(t) = t t^2$, in 0 < t < 1 14M
- 9. Find the Fourier cosine transform of $f(x) = e^{-ax} (x > 0, a > 0)$. 14M

10. Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, \text{ for } |x| < 1 \\ 0, \text{ for } |x| > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ 14M

14M

14M

	На	all Ticket Number :			_
	Co	ode: 7G333	R-1	7	
	00	II B.Tech. I Semester Supplementary Examinations August 2	021		
		Signals and Systems			
	Мс		me: 3		rs
		Answer all five units by choosing one question from each unit (5 x 14 = 70 ********) Mark	s)	
			Marks	СО	Blooms Level
		UNIT–I			
1.	a)	Find the even and odd components of the following signal $x(t) = cost + sint +2sint+4cost$	7M	1	L3
	b)	Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.	7M	2	L2
		OR			
2.	a)	Show that a composite signal is periodic if the ratio of their fundamental periods is a rational number	6M	1	L1
	b)	Find the Fourier series of the following wave form			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			8M	2	L3
3.	a)	Find the Fourier Transform of a Gaussian Pulse	7M	3	L2
	b)	State and prove Differentiation Property of Fourier Transform	7M	2	L3
		OR			
4.	,	Find the Fourier transform of DC Signal	7M	3	L4
	b)	State and prove Time Convolution property of Fourier Transform.	7M		
5.	a)	UNIT–III Explain about the distortion less transmission	6M	1	L3
0.	b)	Explain the following i. Signal Bandwidth ii. System Bandwidth		·	20
		iii. Paley-Wiener Criterion	8M	2	L1
		OR			
6.	a)	A signal v(t)=cos5 t +0.5cos 10 t is instantaneously sampled. The interval between the samples is T _s . If the sampling signal is $S(t) = 5 \sum_{k=-\infty}^{\infty} u(t-0.1k) \qquad \text{and the} v_s(t) = \sum_{k=-\infty}^{\infty} I_k u(t-0.1k)$			
	b)	show that $I_k = I_{k+4}$ where I_k is the strength of the k th pulse Discuss the concept of Sampling of Band pass signals	7M 7M	3 1	L4 L1

		UNIT–IV			
7.	a)	Derive an expression for convolution of two signals. Find the convolution of unit step signal with itself	7M	4	L3
	b)	Show that when two signals are convolved in time domain is multiplied in frequency domain.	7M	4	L2
		OR			
8.	a)	Define auto correlation and cross correlation? Prove that the auto correlation			
		function is maximum at origin.	7M	4	L4
	b)	Find the autocorrelation and Energy Spectral Density(ESD) of $x(t)=e^{-at}u(t)$	7M	4	L3
		UNIT-V			
9.	a)	Explain the Time convolution and Scaling properties of Laplace transform.	7M	5	L2
	b)	Find the inverse Laplace transform of $x(s) = 5(s+5)/s(s+3)$ (s+7); Re(s) > -3	7M	4	L4
		OR			
10.	a)	Explain the constraints on ROC for various classes of signals	7M	5	L2
	b)	Derive the relation between Z transform and Fourier transform	7M	4	L4

Г