II B.Tech. I Semester Supplementary Examinations August 2021

Digital Design

(Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Write a short note on logic gates and their truth tables
b) List out the properties of XOR gate 4 M

OR
2. a) Convert BCD code to 5421 and 84-2-1 code 10M
b) Why NAND and NOR gates are called as universal gates?

UNIT-II

3. a) Simplify the following Boolean expressions to a minimum number of literals
i) $\quad A B C+A^{\prime} B+A B C^{\prime}$
ii) $\quad(X+Y)^{\prime}\left(X^{\prime}+Y^{\prime}\right)$
iii) $\quad X^{\prime} Y Z+X Z$
b) Realize XOR gate using NAND gates 5M

OR

4. a) Obtain minimal expression using the K-map for a given Boolean function $F(A, B, C, D)=$ $\Sigma(0,2,8,10,12,13,14)$ and implement using basic gates
b) what are the limitations of K-Map method 4M

UNIT-III

5. a) Realize full adder using two level basic gates.
b) with a neat diagram explain operation of 2-bit magnitude comparator

OR

6. a) Design 8-line -to-3-line encoder by using basic gates and explains basic operation of it 7M
b) Realize full subtractor using half subtractors. 7 M

UNIT-IV

7. a) Differences between combinational and sequential circuits 6M
b) With a neat diagrams explain the operation of Ring counter 8M

OR

8. a) Draw the logic diagram of LATCH using NOR and NAND gates 4M
b) Design a circuit to Convert JK-FF to D-FF 10M

UNIT-V
9. a) Discuss about the capabilities and limitations of FSM
b) compare Mealy and Moore machines

OR

10. Design a control circuit using D- FFs with one control input S. When $X=0$, the state of the circuit remains the same. When $\mathrm{S}=1$, the circuit goes through the state transition from 00 to 01 to 10 to 11 and repeats
Hall Ticket Number :
Code: 7G331
R-17
II B.Tech. I Semester Supplementary Examinations August 2021
Electronic Circuits(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I
11. a) Compare the input impedance, output impedance and voltage gain of CE, CB and CC configurations. Why CE amplifiers are widely used? 6M
b) Draw the circuit diagram of a two stage RC coupled amplifier. Explain the need of using multi-stage amplifiers
OR
12. a) Draw and explain the circuit of cascaded amplifier and mention the advantages 7M
b) Draw the equivalent circuit of a CE amplifier using Millers theorem. What is the upper 3-dB frequency of such circuit? 7M

UNIT-II

3. Explain the role of coupling capacitors and Bypass capacitors in a RC Coupled Amplifier Circuit.
4. Draw the hybrid -pi model of BJT. Explain the circuit elements in this model.

UNIT-III

5. a) Explain the advantages of negative feedback over positive feedback.
b) Briefly discuss about the effect of feedback on amplifier bandwidth

OR

6. a) Explain the concept of feedback with block diagram6M
b) Write about Classification of feedback amplifiers,
UNIT-IV
7. a) With neat diagram explain about amplitude stability of oscillators.
b) Distinguish between various oscillators.

OR

8. Why +ve feedback is generally used in oscillator circuits? Derive the oscillation frequency of a RC Phase Shift Oscillator.

UNIT-V

9. a) Classify the power amplifiers.
b) Explain crossover distortion in Class B power amplifier 7M

OR

10. Explain in detail about complementary symmetry push pull amplifier.

Hall Ticket Number :
Code: 7G234

II B.Tech. I Semester Supplementary Examinations August 2021

Electrical Circuits and Technology
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Simplify the given network by using Y - transformation and obtain equivalent resistance across X-Y terminals.

b) State and explain the Kirchhoff's Law which can be applied to loop current method.

7M CO1

OR

2. a) Obtain the single equivalent source network across the terminals A -B make use of source transformation technique

b) Explain the series RLC circuits using differential equation approach for DC excitation.

7M CO1

UNIT-II

3. a) Define following terms:
i) RMS value ii) Average value iii) Peak factor iv) Form factor

7M CO2
b) For the periodic waveform given in below figure, find Average value and RMS value.

OR

7M CO2
4. A series-connected RLC circuit has $R=4$ \& and $L=25 \mathrm{mH}$.
(i) Calculate the value of C that will produce a quality factor of 50 .
(ii) Find $\omega 1, \omega 2$, and Bandwidth.
(ii) Determine the average power dissipated at $\omega=\omega 0, \omega 1, \omega 2$.

Take $V m=100 \mathrm{~V}$.

UNIT-III

5. a) Determine the Z-parameters and y-parameters of the below circuit.

b) Determine hybrid parameters and draw the equivalent circuit of h-parameter.

7M CO3

OR
6. a) Find the transmission parameters for the two-port network shown below

b) Appraise the importance of cascaded connection of two port networks.

UNIT-IV

7. a) Deriving the necessary expressions, explain how to predetermine the efficiency of a d.c shunt motor by suitable test.
b) A d.c shunt motor takes 1.2 A on no-load when connected to a 220 V d.c mains, with an armature resistance of 1.2 ohms when the field current is 0.7 A . Determine the load current corresponding to maximum efficiency of the motor.

OR
8. a) Explain in detail the constructional features of $D C$ machine
b) Explain the speed control methods for DC motor.

UNIT-V

9. a) Draw and explain the constructional features of a single phase transformer. Also discuss its operation with and without load.
b) Determine EMF equation of a Transformer.

OR

10. a) Describe construction and principle of operation of 3-phase squirrel cage induction motor.
b) Obtain the condition for maximum torque under running condition in induction motor.

7M CO3
7M CO3

7M CO4
$7 \mathrm{M} \mathrm{CO4}$

10M CO5
4 M co5
10M CO4

4M CO4

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.
b) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ determine $y(0.1)$ correct to four decimal places.

OR

2. Find the real root of the equation $x e^{x}=3$ by Regular-falsi method.

UNIT-II

3. Using Lagrange formula find $f(4)$. Given

x	0	2	3	6
y	-4	2	14	158

OR
4. Evaluate $\int_{0}^{1} \sqrt{1+x^{3}} d x$ taking $\mathrm{h}=0.1$ Using (i) Simpson's $1 / 3$ rd rule (ii) Trapezoidal rule.

UNIT-III

5. Fit a second degree parabola to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21
OR					

6. Form a partial differential equation from $z=f(x+y)$.

UNIT-IV

7. Obtain the Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence show that
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\ldots=\frac{\pi^{2}}{12}$

OR

8. Find the half range cosine series for the function $f(t)=t-t^{2}$, in $0<t<1$

UNIT-V

9. Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.

OR

10. Find the Fourier transform of $f(x)$ given by $f(x)=\left\{\begin{array}{l}1, \text { for }|x|<1 \\ 0, \text { for }|x|>1\end{array}\right.$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$

Code: 7G333

II B.Tech. I Semester Supplementary Examinations August 2021
 Signals and Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the even and odd components of the following signal $x(t)=$ cost $+\operatorname{sint} 7 \mathrm{M}$ $+2 \sin t+4 \cos t$
b) Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.

OR

2. a) Show that a composite signal is periodic if the ratio of their fundamental periods is a rational number
b) Find the Fourier series of the following wave form

UNIT-II
3. a) Find the Fourier Transform of a Gaussian Pulse

7M 3
L2
b) State and prove Differentiation Property of Fourier Transform

7M 2 L3
OR
4. a) Find the Fourier transform of DC Signal
7M $\quad 3 \quad$ L4
b) State and prove Time Convolution property of Fourier Transform.

UNIT-III

5. a) Explain about the distortion less transmission
b) Explain the following
i. Signal Bandwidth
ii. System Bandwidth
iii. Paley-Wiener Criterion

OR

6. a) A signal $v(t)=\cos 5 \pi t+0.5 \cos 10 \pi t$ is instantaneously sampled.

The interval between the samples is T_{s}. If the sampling signal is
$S(t)=5 \sum_{k=-\infty}^{\infty} \delta(t-0.1 k) \quad$ and the $v_{s}(t)=\sum_{k=-\infty}^{\infty} I_{k} \delta(t-0.1 k)$

7M $3 \quad$ L4
b) Discuss the concept of Sampling of Band pass signals

7M 1 L1

UNIT-IV

7. a) Derive an expression for convolution of two signals. Find the convolution of unit step signal with itself

7M 4
b) Show that when two signals are convolved in time domain is multiplied in frequency domain.

7M 4

OR

8. a) Define auto correlation and cross correlation? Prove that the auto correlation
function is maximum at origin.
b) Find the autocorrelation and Energy Spectral Density(ESD) of $x(t)=e^{-a t} u(t)$
M
b)

UNIT-V
$\left.\begin{array}{l}\text { 9. a) Explain the Time convolution and Scaling properties of Laplace transform. } \\ \text { b) } \\ \text { Find the inverse Laplace transform of } x(s)=5(s+5) / s(s+3)(s+7) ; \operatorname{Re}(s)>-3 \\ 7 M\end{array}\right)$
10. a) Explain the constraints on ROC for various classes of signals $7 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
b) Derive the relation between Z transform and Fourier transform

7M 4
L4

