Hall Ticket Number :						D 17
• • • • • • • •						K-I/

Code: 7G234

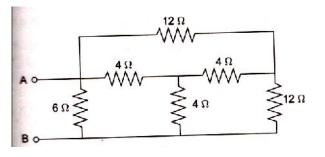
Il B.Tech. I Semester Supplementary Examinations November 2020 Electrical Circuit and Technology

(Electronics and Communication Engineering)

Max. Marks: 70

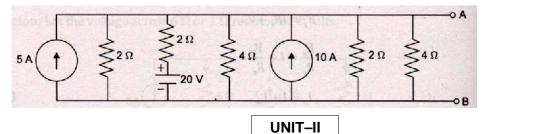
Time: 3 Hours

6M


8M

6M

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)


UNIT–I

- 1. a) Write briefly about delta to star conversion.
 - b) Find the equivalent resistance between the terminals A and B in the figure shown below:

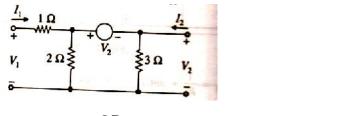
- 2. a) What is source transformation? Explain briefly.
 - b) By using source transformation technique, convert the circuit shown below into a single voltage source and single resistance.

- 3. a) Obtain RMS value, average value, form factor and peak factor of full wave rectified sine wave.
 - b) Find the RMS value of the resultant current in a conductor which carries simultaneously sinusoidal alternating current with a maximum value of 15 A and direct current of 15 A.
 4M

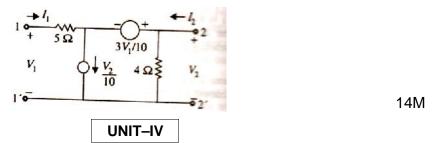
OR

- a) Derive the relationship between band width and half power frequencies of RLC series circuit.
 6M
 - b) A series RLC circuit with R=25 and L=0.6 H results in a leading phase angle of 60^o at a frequency of 40 HZ. At what frequency will the circuit be resonant?

10M


8M

•...


14M

5. For the network shown below, find the y parameters. Explain whether the network is reciprocal and symmetrical.

6. Find the ABCD parameters of the two port network of figure shown below:

7.	a)	Derive the emf equation of dc generator.	7M
	b)	Explain the procedure for obtaining the magnetization characteristics of dc generator.	7M
		OR	
8.	a)	Mention the applications of dc shunt and series motors.	7M
	b)	Explain Swinburne's test.	7M
		UNIT–V	
9.	a)	Explain the principle of operation of single phase transformer.	8M
	b)	Define the terms efficiency and regulation. Write their expressions for a single phase transformer.	6M
		OR	
10.	a)	Explain briefly the principle of operation of induction motor.	6M
	b)	Explain brake test on three phase induction motor.	8M

OR

Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code: 7G331

II B.Tech. I Semester Supplementary Examinations November 2020

Electronic Circuits

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

R-17

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

1. Derive voltage gain, current gain, input impedance and output impedance of a CE transistor amplifier circuits in terms of h-parameter. h12 and h21 are small signal low frequency equivalent hybrid parameters of a transistor. Interpret them.

OR

2. Sketch a R-C coupled, transistorized, CE amplifier using NPN transistor. Draw its frequency response. Why the gain is low at very low and high frequencies? How the bandwidth of amplifier is determined from this response?

UNIT–II

3. (i)Show that rise time of a single stage amplifier is proportional to its upper 3dB cutoff frequency. (ii) Find out the impulse response of a single stage low pass filter.

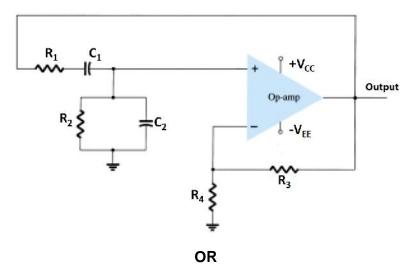
OR

4. Prove that the higher 3dB cutoff frequency is given by:

$$W_{H} = \frac{1}{(C_{C} + C_{L})R_{L}}$$

Adding a pre-amplifier to an audio amplifier increases the voltage gain by 60dB. What is the corresponding factor by which the voltage is increased?

- UNIT-III
- 5. Find the input resistance, output resistance of an amplifier that employs voltage series feedback.


Consider a general feedback system with parameters $A=10^6$ and $A_f=100$. If the magnitude of A decreases by 20percentage what is the corresponding percentage in A_f .

OR

6. Derive suitable expression for the input resistance and the voltage gain of a transconductance amplifier that uses negative feedback. The open loop gain of an amplifier changes by 5 percentages. If 10dB negative feedback is applied, calculate percentage change of the closed loop gain.

UNIT–IV

7. Why wein bridge oscillators are most popular in audio frequency range? Derive the oscillation frequency of a Wien bridge oscillator and show that $R_3=2R_4$.

8. Draw the electrical equivalent circuit of a crystal. Why an oscillator circuits using crystal gives stable frequency? Derive the series resonance frequency and Parallel resonance frequency of a crystal oscillator.

UNIT-V

9. With a neat diagram derive the efficiency of a transformer coupled Class-A power amplifier when a square wave signal of peak amplitude V_m is given as the input. Why low beta () is generally preferred in power amplifiers?

OR

10. With a neat diagram derive the efficiency of a transformer coupled Class-B power amplifier when a sinusoidal wave signal of peak amplitude V_m is given as the input. Explain the principle operation of a push pull power amplifier. Compare its performance with complementary symmetry power amplifier

Hall Ticket Number :						
						R-17

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations November 2020

Engineering Mathematics – III

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Find a root of the equation $x^3 x 11 = 0$ by using Bisection method.
 - b) Find a root of the equation $3x = \cos x + 1$ by Newton-Raphson method, correct to three decimal places.

OR

- 2. a) Apply Euler's method to solve for y when x = 0.6 given that y' = 1 2xy, y(0) = 0.
 - b) Using Runge-Kutta method of order 4, compute y(0.2) from

$$10\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$, $h = 0.1$.

UNIT–II

3. a) Find the missing term in the following table using Lagrange's interpolation

x	1	2	4	5	6
У	14	15	5	-	9

b) From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
Number of Students	31	42	51	35	31
		OR			

4. a) Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$, by using Trapezoidal rule with h = 0.2. Hence determine the value of f.

b) Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using Simpson's $\frac{3}{8}$ th rule.

UNIT-III

5. a) Find the least squares fit of the form $y = a_0 + a_1 x^2$ to the following data

v 2 5 3 0	x	-1	0	1	2
y 2 3 3 0	У	2	5	3	0

b) Solve : $xp - yq = y^2 - x^2$.

OR

6. a) Fit a curve of the form $y = ae^{bx}$ to the following data.

х	0	1	2	3
У	1.05	2.10	3.85	8.30

b) Using method of separation of variables, Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that $u(0, y) = 8e^{-3y}$.

Code: 7GC32

UNIT-IV

7. a) If
$$f(x) = \begin{cases} -x, & -f < x < 0 \\ x, & 0 < x < f. \end{cases}$$

then show that
$$f(x) = \frac{f}{2} - \frac{4}{f} \left[\frac{1}{1^2} \cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right].$$

b) Find a Fourier series to represent $f(x) = |\sin x|$ in the interval -f < x < f.

OR

- 8. a) Obtain the half range sine series for e^x in 0 < x < 1.
 - b) Find the Half range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1.

9. a) Find the Fourier transform of
$$f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1. \end{cases}$$
 Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

b) Find the Fourier Cosine transform of
$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

OR

10. a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.

b) Show that the inverse finite Fourier sine transform of $F_s(n) = \frac{1}{f} \left\{ 1 + \cos nf - 2\cos \frac{nf}{2} \right\}$ is

$$f(x) = \begin{cases} 1, & 0 < x < f/2 \\ -1, & f/2 < x < f \end{cases}.$$

Hall	Tick	et Number :	
Code	· 70	R-17	
Code		B.Tech. I Semester Supplementary Examinations November 2020 Environmental Science (Electronics and Communication Engineering)	
-	-	Time: 3 Hou ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Jrs
		UNIT–I	
1.	a)	Define Environment. With the help of diagram relate the interactions between different components of environment.	7M
	b)	Enumerate multidisciplinary nature of environmental studies.	7M
		OR	
2.	a)	Explain different methods to create environmental awareness in public.	7M
	b)	Describe the importance of environmental studies.	7M
3.	a)	List the uses of forest resources and Mention main causes for deforestation.	7M
	b)	With the help of neat sketch explain water cycle in environment. OR	7M
4.	a)	Summarise the impacts of construction of Dams on forest and tribal people.	7M
	b)	List and explain the environmental effects of extracting mineral resources and soil erosion.	7M
-	-)	UNIT-III	
5.	a)	With the help of neat diagram explain energy flow and material flow in the environment.	7M
	b)	Draw neat diagram of Nitrogen cycle and explain the flow of different forms of nitrogen in environment.	7M
		OR	
6.	a)	Identify major threats to biodiversity and explain In- Situ conservation techniques	7M
	b)	Compare different biodiversity hot spots. UNIT-IV	7M
7.	a)	Define Noise. List the causes, effects and control methods of Noise pollution.	7M
	b)	Explain the phenomena and effects of thermal pollution with an example. OR	7M
8.	a)	Briefly outline the sources of water pollution and suggest water pollution control methods.	7M
	b)	With a case study discuss the effects of nuclear hazard.	7M
9.	a)	With neat sketch explain different rain water harvesting techniques.	7M
	b)	Enumerate causes, effects and control measures of acid rain. OR	7M
10.	a)	Write a note on Forest conservation act.	7M
	b)	Discuss the effect of population explosion on environment.	7M

	Hall	Ticket Number :	1
C	Cod	e: 7G333	
		II B.Tech. I Semester Supplementary Examinations November 2020	
		Signals and Systems	
		(Electronics and Communication Engineering)	
	-	x. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.	a)	Explain the various operations on signals	7M
	b)	Determine whether the following signals are periodic or not? If periodic determine fundamental period.	
		i) $\cos t + \sin \sqrt{2}t \text{ Cost}$ ii) $2\cos 100ft + 5\sin 50t$	7M
		OR	
2.		State and prove the properties of Fourier series	14M
		UNIT-II	
3.		Define Fourier transform. Explain the properties of Fourier transform	14M
		OR	
4.	a)	Obtain the Fourier transform of a periodic train of impulses with period T.	7M
	b)	Obtain the Fourier transform of the following functions.	
		i) Unit step function ii) Unit impulse function	7M
		UNIT-III	
5.	a)	What is the impulse response of two LTI systems connected in parallel?	7M
	b)	Differentiate LTI system with LTV system.	7M
		OR	
6.	a)	Explain the difference between the following systems.	
		i) Linear and non-linear systems. ii) Time variant and time invariant systems	7M
	b)	Discuss about the Causality and physical reliability of a system.	7M
		UNIT-IV	
7.	a)	Explain the relation between convolution and correlation.	7M
	b)	State and prove Time convolution property	7M
		OR	
8.		Find the graphical convolution between following signals	
		x(t)=1 for 0 t 2 and h(t)=1 for 0 t 3 0 otherwise 0 otherwise	14M
			14111
0	2)		7M
9.	a) b)	Discuss any 3 properties of Laplace transform. Find the inverse Laplace transform of $x(s) = 5(s+5)/s(s+3)(s+7)$; Re(s) > -3	71VI 7M
	0)	OR	1 111
0.	a)	For the transfer function H(s) = s+10/ s^2 +3s+2 find the response due to input x(t)=sin2t u(t)	7M
υ.	b)	Explain the Initial and Final value theorems of Laplace transform	7M
	ω,		1 1 1 1