	Cod	le: 7GC32	
	Cou	II B.Tech. I Semester Supplementary Examinations June 2024	
		Engineering Mathematics-III	
		(Common to All Branches)	
		Itime: 3 Hours wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	Ans		
		UNIT–I	
۱.	a)	Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, $y(0) = 1$ determine $y(0.1)$	
	,		71
	b)	correct to four decimal places. Find a real rest of the equation $3x = 200 \text{ m} + 1 \text{ hy}$ Newton Dephase's method correct to	71
	5)	Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places.	71
		OR	71
2.		Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2 y(0) = 1$. Find the initial values	
		y(-0.1), y(0.1), y(0.2) from the Taylors series method.	
			141
3.	a)	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by Simpson's 1/3 rule.	
			71
	b)	Using Lagrange formula find $f(4)$. Given	
		x 0 2 3 6	
		y -4 2 14 158	71
1.		OR	
τ.		Using Lagrange is interpolation formula find the value of $f(10)$ from the following table	
		x 5 6 9 11	1 1 1
		y 12 13 14 16 UNIT–III	141
5.		Form the partial differential equation by eliminating the arbitrary constants	
		$x^{2} + y^{2} + (z - c)^{2} = a^{2}$	141
		OR	1-11
5.		Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and	
		g(y) from $z = y f(x) + x g(y)$.	1 4 1
			141
7.		Find the fourier series expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce	
		that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$	141
		OR	
3.	a)	Find the Fourier series expansion for $f(x) = f - x$ in $0 < x < f$	71
	b)	Expand $f(x) = \cos x, 0 < x < f$ in half range sine series.	7
		UNIT–V	
).	a)	Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$	
			71
	b)	Find the Fourier sin and cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$	71
).			
		Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$, hence, derive the Fourier sine	
		transform of $W(x) = \frac{x}{1+x^2}$	

	Γ	Ha	II Ticket Number :					
	L			-17				
			Line Code: 7G134 Il B.Tech. I Semester Supplementary Examinations June 2024					
	Discrete Mathematics							
			(Computer Science and Engineering)					
		Mc		3 Hours				
ICe.		Ans	swer any five full questions by choosing one question from each unit (5x14 = 70) Marks)				
ract				Marks				
maıp			UNIT–I					
as	1.	a)	Define Statement and Explain various Connectives with Example.	7M				
ateo		b)	Explain Free and Bound variables with examples.	7M				
e tre			OR					
ă II	2.	a)	What is Tautology? Prove that the following statement is tautology or not.					
≤ C			$((P->R)^{(Q->R)}) - > ((PVQ) - >R)$	7M				
4Ω 1		b)	Find Principle Conjunctive Normal form for the following formula.					
32			P->((P->Q)^ ~(~QV~P))	7M				
eg.								
ritter	2		UNIT-II	CM				
N SC	3.	a) b)	Explain types of functions with examples. Draw the Hasse diagram for the positive divisors for 36.	6M 8M				
atior		D)	OR	OIVI				
Any revealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice	4.		State relation and explain properties of binary relations with examples.	14M				
io/pl								
or ai			UNIT–III					
aluat	5.	a)	Explain pigeonhole principle with example.	7M				
eva eva		b)	How many different license plates are there that involve 1, 2 or 3 letters					
sal tc			followed by 4 digits?	7M				
appe			OR					
ion,	6.		Define Group, monoid, semigroups and subgroups with examples.	14M				
ticat								
lenti			UNIT-IV					
ot	7.		Solve the recurrence relation $a_n = a_{n-1} + f(n)$, n 1 by substitution.	14M				
alıng	~	-)	OR	714				
eve	8.	a) ⊾)	Determine the coefficient x^5 in $(1-2x)^{-7}$	7M				
I N I		b)	Find the sequence generated by the following function. $(3+x)^3$	7M				
N.			UNIT-V					
	a	a)	What is Hamiltonian graph? Explain with an example.	7M				
	5.	b)	Explain DFS with example.	7M				
		~)	OR					
1	0.	a)	Define a graph and explain various representations of graph with examples.	10M				
	5.	b)	Define Planner graph with examples.	4M				
		,	***					