	Hall Ticket Number :							
	Code: 7G134							
Il B.Tech. I Semester Supplementary Examinations May/ June 2022								
Discrete Mathematics								
	(Computer Science and Engineering)							
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)							
	******	Marks						
	UNIT–I	IVIAI NS						
1. a) Define rules of inference. And Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow (Q \rightarrow Q)$							
	S), ~R V P and R.	8M						
b		6M						
2.	OR Define rules of inference. And Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow (Q \rightarrow Q)$							
۷.	S), ~R V P and R.	14M						
	UNIT–II							
3. a) Let A={1,2,3,4,6,12} and A defines the relation R aRb iff "a divides b". Prove that R is							
_	Partial Order on A. Draw the Hasse diagram.	10M						
b) Explain compatibility relation with examples. OR	4M						
4. a		8M						
b		6M						
	UNIT–III							
5.	Let G be the set of all non-zero real numbers and let a*b=1/2ab. Show that <g,*> is an</g,*>	4 4 4 4						
	abelian group. OR	14M						
6.	Consider a set of integers from 1 to 250. Find how many of these numbers are divisible by 3							
	or 5 or 7.Also indicate how many are divisible by 3 or 7 but not by 5 and divisible by 3 or 5.	14M						
7	UNIT-IV							
7.	Find a generating function for the recurrence relation $a_{n+1}-a_n=3^n$, $n>=0$, $a_0=1$. Find the general solution	14M						
	OR							
8.	Solve the recurrence relation $a_n + 4a_{n-1} + 4a_{n-2} = 8$, $n \ge 2$, with $a_0 = 1, a_1 = 2$	14M						
9. a	UNIT-V) What is Hamiltonian graph? Explain with an example.	8M						
J. a b		OIVI						
-	i) Complete graph ii) Dual graph	6M						
10.	OR Define Isomorphism. Verify the two graphs are isomorphic or not.							
10.	a b s t							
	f w							
	g y							
	d c v u							
	G H	14M						

	На	all Ticket	Number	:											
	Co	de: 7G(737											R-17	
Code: 7GC32 II B.Tech. I Semester Supplementary Examinations May/June 2022 Engineering Mathematics-III (Common to All Branches) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)															
								******							Marks
							UNI	Г—I							
1.	a)	Using 7	Faylor's s	eries	meth	od, c	omp	ute the v	alue of	у	at x=	0.2 fr	rom ⁴	$\frac{ly}{lx} = x + y;$	
		y(0) = 1	l.												7M
	b)		he bisect ecimal pla		ethod	, find	a re	eal root o	of the e	quatio	on co	sx =	xe^x	correct to	7M
							OF	२							
2.	a)	Apply f	ourth ord	er Ru	nge-k	Kutta	meth	nod to $\frac{dy}{dx}$	$=3x+\frac{1}{2}$	у, у	v(0) = 1	dete	ermir	ne $y(0.1)$	7M
		correct	to four de	cimal p	blaces	S.									
	b)				equa	tion 3	3x =	$\cos x + \frac{1}{2}$	l by Nev	vton-l	Raphso	on's n	netho	od correct	7M
		to four o	decimal pl	aces.			UNIT	-11							
3.	a)	Evoluet			imno										714
		Evaluat	$\int_{0}^{1} \frac{1}{1+x} dx$	a by S	imps	UNSI	/310	lie.							7M
	b)	Using L	agrange f	ormula	a find	f(4)	. Giv	en							
		x	0	2		3		6							7M
		У	-4	2		14		158							
4.		The foll	owing tab	le of v	عمداد	ofva	O nd v								
ч.		X			1			3	4		5	6	6		
		у	6.989	7 7.4	1036	7.78	315	8.1291	8.451	0 8	.7506	9.03	309		
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=6										14M				
UNIT-III															
5.	a)	Fit a str	aight line	y = a +	b x to	the c	lata I	by the me	ethod of	least	square	es			
		X		1	3	6		8							7M
	b)	y Farres th		3	2	5		4		.	2 .	2	2 •		
	b) Form the partial differential equation by eliminating a, b from $a x^2 + b y^2 + z^2 = 1$ 7N OR										7M				
														_	

7M

7M

7M

6. a) Form a partial differential equation by eliminating the arbitrary functions from z = f(x+at) + g(x-at).

b) Form a partial differential equation by eliminating the arbitrary functions f(x) and g(y) from z = y f(x) + x g(y).

UNIT–IV

- 7. a) Express f(x) = x as half range sine in 0 < x < 2
 - b) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$

OR

8. a) Find the half range cosine series for f(x) = x(2-x) in $0 \le x \le 2$ and hence find prove

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
 7M

b) Find the Fourier series to represent f(x) = |x| when -f < x < f and deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$$
7M

UNIT-V

- 9. a) Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$ 7M
 - b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 x, 1 < x < 2 \\ 0, x > 2 \end{cases}$ 7M

OR

10. Find the Fourier transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx = \frac{f}{2}e^{-m}, m > 0$ 14M

Ha	all Ticket Number : R-17]
Co	de: 7G135	
	II B.Tech. I Semester Supplementary Examinations May/June 2022	
	Web Programming	
	(Computer Science and Engineering) ax. Marks: 70 Time: 3 Hours	
	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	

	UNIT–I	Marks
1. a)	Explain block-level elements in HTML with example	7M
b)	Write any two Core attributes in HTML.	7M
,	OR	
2.	Why you need links in html? Explain the with an example to create a Link to different page	14M
	UNIT–II	
3. a)	Describe basic table element and attributes with example	7M
b)	What is video tag? Write any five video tag attributes.	7M
	OR	
4.	Write a html form to manage personal details of a student like name, class, qualification,	
	photo, address etc., using suitable tags and send Form Data to the Server.	14M
5.	UNIT–III Explain about different types of CSS with example programs	14M
5.	OR	14111
6.	What are Pseudo-classes? Explain with examples.	14M
0.		1 1101
	UNIT-IV	
7. a)	How to create a external JavaScript file? Explain.	7M
b)	What is Document Object Model discuss the various DOM methods used?	7M
,	OR	
8.	What are operators? Explain operators in java script	14M
	UNIT-V	
9. a)	What is selector in jQuery. Explain with example?	7M
b)	Write a basic code for adding jquery library to pages?	7M
	OR	
0. a)	Is jQuery front end or backend? Explain with example.	7M
b)	Write about AJAX get() and post() Methods	7M

	Ha	all Ticket Number :							
	Со	pde: 7G132							
	II B.Tech. I Semester Supplementary Examinations May/June 2022								
	Database Management Systems								
		(Computer Science and Engineering)							
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)								

		UNIT–I	Marks						
1.	a)	Explain about types of database languages with syntax and example?	10M						
	b)	What are the different types of user interface designed for database users? Discuss the main activities of each.	4M						
		OR							
2.	,	Describe about the three levels of data abstraction	7M						
	b)	Explain the advantages of using a query language instead of custom programs to process data.	7M						
_		UNIT–II							
3.		What is an E-R model? Explain with suitable examples, entity, entity sets, and attributes.	6M						
	b)	What are integrity constraints? Define the terms primary key constraint and foreign key constraint. How are these constraints expressed in SQL?	8M						
		OR							
4.	a)	What is a relation? Differentiate between a relation schema and a relation instance.	7M						
	b)	With examples, explain enforcing integrity constraint.	7M						
5.	a)	What are Sub Queries how they are implemented in SQL?	7M						
	b)	Compare the stored procedures with stored functions?	7M						
		OR							
6.	,	What are Correlated Queries how they are applied in SQL?	7M						
	b)	What is a trigger? What are its parts? How they are created?	7M						
7.		UNIT-IV What is Normalization? Explain briefly 1NF, 2NF & 3NF with suitable examples.	14M						
7.		OR	14111						
8.	a)	Suppose you are given a relation $R = (A, B, C, D, E)$ with the following functional							
	,	dependencies: BD E, A C Show that the decomposition into R1 = (A, B, C) and							
		R2 = (D, E) is lossy.	7M						
	b)	When is a de composition said to be dependency-preserving? why is this property Useful?	7M						
		UNIT-V	7 111						
9.	a)	Illustrate concurrent execution of transaction with examples?	6M						
	b)	Discuss briefly about the dynamic index structure with one example?	8M						
OR									
10.	a)	Discuss about lock-based concurrency control.	7M						
	b)	How data organized in a hash-based index. When would you use a hash-based index?	7M						

	На	all Ticket Number :	
		ode: 7G133	
	CU	II B.Tech. I Semester Supplementary Examinations May/June 2022	-
		Digital Logic Design	
		(Computer Science and Engineering)	
		Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	Marks
1.	a)	Prove that the sum of all min-terms of a Boolean function of three variables is equal to 1.	7M
	b)	Reduce the following Boolean expression to 3 literals. (CD' +A)'+ A+CD+AB	7M
		OR	
2.		Explain subtraction using r-1's complements with an example.	7M
	b)	Show that the dual of the Ex-OR is equal to its complement?	7M
2	a)	UNIT-II Simply the Bealean function $E/(W \times V Z) = (1.2.7.11.15)$ Which has the den't	
5.	a)	Simply the Boolean function $F(W,X,Y,Z) = (1,3,7,11,15)$ Which has the don't care conditions $d(W,X,Y,Z) = (0,2,5)$ using k-map	7M
	b)	Obtain the minimal SOP expression for $m(2,3,5,7,9,11,12,14,15)$ and implement using	
	,	NAND gates.	7M
		OR	
4.	a)	Implement the following Boolean expression with exclusive-OR and AND gates: F = AB ^I CD ^I +A ^I BCD ^I + AB ^I C ^I D +A ^I BC ^I D	7M
	b)	Implement the Boolean function F(A,B,C,D)=A'B'+C'D'+B'C' using the following two level gates i) NAND-AND ii) NOR-OR	7M
		UNIT–III	
5.	,	Design 4-bit binary to Gray code converter?	7M
	b)	Construct a 4-to-16 line decode with five 2-to-4 line decoders with enable?	7M
6.		OR Implement a full adder circuit using NOR gates; implement a full adder using 8x1	
0.		multiplexers. Explain both the circuits and compare their efficiency?	14M
		UNIT–IV	
7.	a)	Draw the circuit diagram of S-R Flip-Flop with NAND gates and explain its operation with the help of a truth table?	7M
	b)	Explain with the help of neat diagram, the operation of 4-bit register with parallel load?	7M
0		OR	
8.	,	Draw the circuit diagram of clocked D Flip-Flop with NAND gates and explain its operation using truth table?	7M
	b)	What is difference between latch and flip flop? Explain about clocked RS Flip-Flop using NAND gates?	7M
9.		UNIT-V Derive the PLA programming table for the combinational circuit that squares a 3-bit number?	14M
		OR	
10.		Implement the following functions using PLA. A $(x,y,z) = m (1,2,4,6)$	
		B(x,y,z) = m(0,1,6,7)	
		C(x,y,z) = m(2,6)	14M
		* * *	