Hall Ticket Number :						
						R-17

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations November 2020

Engineering Mathematics – III

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Find a root of the equation $x^3 x 11 = 0$ by using Bisection method.
 - b) Find a root of the equation $3x = \cos x + 1$ by Newton-Raphson method, correct to three decimal places.

OR

- 2. a) Apply Euler's method to solve for y when x = 0.6 given that y' = 1 2xy, y(0) = 0.
 - b) Using Runge-Kutta method of order 4, compute y(0.2) from

$$10\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$, $h = 0.1$.

UNIT–II

3. a) Find the missing term in the following table using Lagrange's interpolation

x	1	2	4	5	6
У	14	15	5	-	9

b) From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80					
Number of Students	31	42	51	35	31					
OR										

4. a) Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$, by using Trapezoidal rule with h = 0.2. Hence determine the value of f.

b) Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using Simpson's $\frac{3}{8}$ th rule.

UNIT-III

5. a) Find the least squares fit of the form $y = a_0 + a_1 x^2$ to the following data

v 2 5 3 0	x	-1	0	1	2
y 2 3 3 0	У	2	5	3	0

b) Solve : $xp - yq = y^2 - x^2$.

OR

6. a) Fit a curve of the form $y = ae^{bx}$ to the following data.

х	0	1	2	3
У	1.05	2.10	3.85	8.30

b) Using method of separation of variables, Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that $u(0, y) = 8e^{-3y}$.

Code: 7GC32

UNIT-IV

7. a) If
$$f(x) = \begin{cases} -x, & -f < x < 0 \\ x, & 0 < x < f. \end{cases}$$

then show that
$$f(x) = \frac{f}{2} - \frac{4}{f} \left[\frac{1}{1^2} \cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right].$$

b) Find a Fourier series to represent $f(x) = |\sin x|$ in the interval -f < x < f.

OR

- 8. a) Obtain the half range sine series for e^x in 0 < x < 1.
 - b) Find the Half range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1.

9. a) Find the Fourier transform of
$$f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1. \end{cases}$$
 Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

b) Find the Fourier Cosine transform of
$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

OR

10. a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.

b) Show that the inverse finite Fourier sine transform of $F_s(n) = \frac{1}{f} \left\{ 1 + \cos nf - 2\cos \frac{nf}{2} \right\}$ is

$$f(x) = \begin{cases} 1, & 0 < x < f/2 \\ -1, & f/2 < x < f \end{cases}.$$

Hall ⁻	Tick	et Number :									
Code	e: 7G	R-17									
		B.Tech. I Semester Supplementary Examinations November 2020									
		Web Programming									
Max	Mc	(Computer Science and Engineering) arks: 70 Time: 3 Ho	Irs								
-		ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	015								
		UNIT–I									
1.	a)	List and Differentiate HTML Block and Inline Elements	7N								
	b)	What is a div element? Discuss about different attributes along with div with example.	7N								
2.	a)	OR Explain text processing tags with suitable example.	7N								
۷.	b)	Give an example to create In-Page Links with the <a> Element.	7N								
	0)		710								
3.	a)	Explain Table attributes with suitable example.	7N								
	b)	How to add a caption and grouping sections of a Table	7N								
		OR									
4.	a)	Explain image tag in HTML with properties.	7N								
	b)	Explain how to add Flash or Video Using Images as Links in Web Pages	7N								
		UNIT–III									
5.	a)	Explain different types of cascading style sheets in HTML with examples									
	b)	What is a list? Explain different types of lists with example.	7N								
6.	a)	OR Write the difference between HTML and XML	7N								
0.	b)	Create a sample XML document.	7N								
	2)										
7.	a)	What is the need of java script in web page. Create an external java script									
	,	with an example.	7N								
	b)	Explain about DOM?	7N								
	,	OR									
8.	a)	How can you create user defined functions and pass the arguments in java									
		script explain with an example?	7N								
	b)	Write a program to validate pin number column in web page	7N								
		UNIT–V									
9.	a)	What is the need of JQuery in web programming? Explain how to add JQuery	71/								
		with example	7N								
	b)	How to manage events with JQuery. Explain with example OR	7N								
10.	a)	How to add JQuert to web page.	7N								
	b)	How to manage ajax with JQuery. Explain with example	7N								
	,	****									

Hall	Tick	et Number :													
Code	: 7 G	132	1	1	1	1	1	1	1	1	1	1	L	R-	17
		B.Tech. I Se	mes	ter S	Supp	olem	ente	ary I	Exar	nina	tion	s Nc	veml	oer 2020	
								-	ner	-					
Max	. Mc	arks: 70	(C	.om	oure	er SCI	enc	e ar	nd Er	igine	eenr	ıg)		Time: 3	3 Hours
A	\nsw	er all five uni	ts by	chc	osing	g on	•	estio *****		m ec	ach u	unit (5 x 14	= 70 Mar	ks)
							[NIT-I						
1.	1. a) Define DBMS. Outline the history of database management systems.											7M			
	b)	List and exp	lain a	abou	t data	abas	e lan	guag	jes w	/ith e	xamj	oles.			7M
								OF	R						
2.	a)	Explain abou	ut the	e app	olicat	ions	of DE	BMS	with	suita	ble e	exam	ples.		7M
	b)	What is trans	sacti	on m	nanag	geme	ent? I	Discu	iss a	bout	Data	a Sto	rage a	nd Queryi	ing 7M
								UN	IIT–II						
3.	a)	Construct a			0				-					e the enti	
		and relations	•	•	•							•			7M
	b)	Differentiate	betv	veen	speo	cializ	ation		•	eralız	atior	n with	n exam	nples.	7M
OR 4. a) Discuss about cross-product and rename operations with examples.									es.	7M					
	b)								•						el to
											7M				
								UN	IT-II	I					
5.	a)	Compare an	d co	ntras	st diff	eren	t DDI	Lano	d DM	L coi	mma	nds	with e>	amples.	7M
	b)	Briefly discu	ss ał	oout	types	s of t	rigge			amp	les.				7M
6.	2)	Illustrate abo	out d	ifforc	nt tu		of cul	OF		and	corr	alata	d noct	od quorios	s. 7M
0.	a) b)	Briefly discu				•		•						eu queries	5. 7 IVI 7M
	5)	Drieny diood	55 a.	Jour	51010	a iui			IT-I\	·	proot	Juun			7101
7.	a)	Explain third	norr	nal f	orm	with a	a suit								7M
	b)	Define funct								•		FD a	and Ti	rivial FD v	vith
		examples.													7M
0		Define trans	:4:	-l				OF			NIT	م مائز،			714
8.	a) b)	Define trans		•		•								•	7M 7M
	b)	Outline 2NF	. ட151	out	ne h		5115 ([eu by IIT–V	<u> </u>	unud	псу		ampies.	7 171
9.	a)	Summarize) nro	perti	es D	liscus				izabi	litv v	vith an	example	7M
0.	b)	Explain in de		•	•									2	7M
	,							OF							
10.	a)	Define trans	actio	n. Ex	xplair	n abo	out th	ie tra	nsac	tion	state	diag	jram.		7M
	b)	Compare an	d co	ntras	st B+	Tree	es an	d IS/	AM d	ata s	truct	ures			7M
							**	***							

Hall ⁻	Tick	et Number :	
Code	e: 7G	R-17	
	II B	.Tech. I Semester Supplementary Examinations November 2020 Digital Logic Design	
-		(Computer Science and Engineering) Time: 3 Hou rer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs
		UNIT–I	
1.	a)	Perform the subtraction using 1's complement method.	
		(i)11010 – 10000.01 (ii)11010 – 1101 (iii)101 - 110000	7M
	b)	Solve the following	
		i) $(57.125)_{10} = ()_8$ ii) $(30.6875)_{10} = ()_2$ iii) $(137.75)_8 = ()_{10}$	7M
		OR	
2.	a)	Covert (105.1510) to binary, octal, hexadecimal.	7M
	b)	Express the Decimal Digits 0-9 in BCD, 2421, 8421 and Excess-3.	7M
3.	a)	Prove the following Boolean theorems	
	,	i) $AB+A'C = (A+C)(A'+B)$ ii) $AB+A'C+BC = AB+A'C$	7M
	b)	Simplify the following Boolean expressions	-14
		i) ABC+AB'+ABC' ii) ACD+A'BCD.	7M
		OR	
4.	a)	Simplify the expression $Y = m(7,9,10,11,12,13,14,15)$ using the k-map method.	7M
	b)	Simplify the following Boolean function, $F(A,B,C,D) = m(1,3,7,11,15) + d(0,2,5)$	7M
		UNIT-III	
5.	a)	Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers.	7M
	b)	Describe the operations performed by the following logic circuits with an example i) Comparator ii) Decoder iii) Encoder	7M
		OR	
6.	a)	Explain the implementation of 4-input priority encoder with truth table, k-maps, Boolean function and schematic diagrams.	8M
	b)	Design a combinational logic circuit that has 3 inputs. The output is required	
	,	to go HIGH whenever the number of inputs have even number of 1's. Draw the truth table. Minimize the Boolean function using K-map. Draw the circuit diagram.	6M

Code: 7G133

7.	a)	Design a SR flip flop using NAND gates. Explain the operation of the SR flip flop with the help of characteristic table and characteristic equation.									
	b)	Convert D flip-flop into T and JK flip-flops.	7M								
		OR									
8.	a)	Explain with the help of neat diagram the operation of 4-bit universal shift register.	8M								
	b)	Convert JK flip flop into SR flip flop.									
9.	a)	Design a modulo-12 up synchronous counter using T- flip flops and draw circuit diagram.	7M								
	b)	Realize the following Boolean function using PROM f (x, y, z, w) = $m(0, 1, 3, 6, 8, 9, 15)$.									
		OR									
10.	a)	Draw the logic diagram for a 4-bit binary ripple down counter using positive edge triggered flip-flops.	7M								
	b)	Tabulate the PLA programmable table for the four Boolean functions given below: $F1(x,y,z) = m(1,2,4,6)$ $F2(x,y,z) = m(0,1,6,7)$									
		F3(x,y,z) = m(2,6) $F4(x,y,z) = m(1,2,3,5,7).$	7M								

Hall	Tick	et Number :]]		
Code:	7G 1	34								<u> </u>				R-1	7
II B.Tech. I Semester Supplementary Examinations November 2020											1				
							Mc	_	-						
Max. I Ai		ks: 70 er all five units	-			one		stion		-			5 x 14	Time: 3 4 = 70 Mark:	
4	-)	Description		- 4					IT_I						714
1.	a)	Demonstrati		•	•••	,		•	., .,			•	•	•	7M
	b) Show that tI^{io} ; fol ^{iat p} g (condi) and $(p \lor q_{\gamma} \land (p \lor r))$ are Slogy by using truth tables. (i) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$										7M				
			\sim	<i>a</i>) ^	c	* F		OR		$\rightarrow r$	-				
2.	a)	Show that ((*)	_ (\	1 229	(x)	_> ('	∀ <u>~</u> ⊃c	P(x)	·	Q(x)	00		7M
	b)	Verify the va dangerous a					-	-							ls". 7M
3.	a)	Le t $A = {}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$	p} an ⊳ <i>R</i> an	id R id Ra	= {(4 5, Ju	a, b)(stify	ions (5, a) your	UN (<i>b</i> , <i>b</i>)	IT-II erefoi IT-II }, <i>s</i> = ver.		ere a , a) (<i>l</i>	, a)	b,b)	be a relat	
	b)	In A. Find Solution If $A = \frac{1}{4}$ of R.	,4} a	nd $\frac{2}{R}$	= { > <i>s,</i> {(=	[1,2),	(2,3)	(3,4))(4,1))} the	en fir	nd th	e tra	ansitive clos	ure 7M
								OR	R						
4.	a)	Let $\{1,2\}$ equivarence	,3, relat	7} ai	nd _R	_ {(x,y)	OP x - y	t (∕is	livisil	ble b	y 3}.	Shc	ow that R is	an 8M
	b)	What is Pose on { <i>0,2,5,1</i> (the H	lass	e dia	gram	for t	he " <i>l</i>	less t	han	or eq	<i>qual to</i> " relat	ion 6M
								UN	T–III						
5.	a)	If S is set of w.r.t. matrix			•					· =	i the up?	n sha Justi		at S is a gro our answer.	oup 7M
	b)	Let R be the a * b = a + b									bina	ry op	perat	ion defined	by 7M
								OR	2						
6.	a)	A newborn c named if we			•							•	•		
	b)	A certain co can prograr languages. I	n in	FO	RTR	AN,	35 i	n Pa	ascal	and	23	can	n pro	ogram in b	

UNIT-IV

- 4M
 - 6M
 - c) Find the generating function for the sequence 1, 1, 1, 1. 4M

- 8. a) Find the general solution for a^n if $a^n a^{n-1} 12_{a^{n-2}} = 0$ for $a^{n-2} = 0$ for generating functions. 7M
 - b) $\begin{array}{c} g & ne_1 & ti \\ c & ju \\ c & mt & it \\ an 5an 1 + 6an 2 = 4n \ for \ n \ge 2. \end{array}$ nce relation $\begin{array}{c} 2 & e^{-1} \\ n & ti \\ a^n & in \\ a^n & in \\ a^n & in \end{array}$ 7M

9. a) State and prove Euler's formula for a connected planar graph 7M b) Su^{ate anc}that $G^* \stackrel{\text{Eule}}{\underset{\text{is a s}}{\text{iple g}}} \inf \stackrel{\text{NIT-}}{\underset{\text{is a s}}{\text{iple g}}} \int \stackrel{\text{NIT-}}{\underset{\text{onnected}}{\text{onvected}}} ove that G must be connected if <math>|E| > (1/2)(n-1)(n-2)$. 7M

OR

- 10. a) Prove that a complete bipartite graph $\frac{1}{km,n}$ is planar? If $m \leq 2$ or $n \leq 2$ 7M
 - Describe how to obtain all possible spanning trees for the following graph and b) list the total number of different spanning trees.

7M