		II B.Tech. I Semester Supplementary Examinations March/April 2023	3
		Fluid Mechanics	
		(Civil Engineering) Max. Marks: 70 Time: 3	
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 N ********	
			Marks
		UNIT–I	
1.		A tank is constructed of a series of cylinders having diameter of 1.8 m, 2 m, 3 m as shown below fig. The tank contains oil, water and glycerin and a mercury manometer is attached to its bottom as shown below. Calculate the manometer reading h if specific gravities of oil , glycerin and mercury are 0.9,1.3 and 13.6 respectively.	
		Water 2 m 1.8 m 2 m 1.5 m Glycerine $x \frac{\Delta h}{Y}$	
		OR	14M
2.		State Pascal's law. Derive the equation for the same.	14M
		UNIT-II	
3.		Define and distinguish between stream line, path line and streak line.	14M
		OR III and I	
4.		State the momentum equation. Explain how we will apply momentum equation for determining the force exerted by a flowing liquid on a pipe bend.	14M
		UNIT-III	
5.		Derive Darcy-Weisbach equation for turbulent flows.	14M
		OR	
6.	a)	Classify the various types of orifice?	6M
	b)	A square orifice 1.5 m long is provided in a tank. The water level on one side of the orifice is 1 m above the top edge of the orifice and 0.5 m below the top edge on the other side of the orifice. Find the discharge through the orifice, if $Cd = 0.64$	8M
7	-)		014
7.	a) b)	Explain about Reynolds Experiment with the help of a neat sketch.	8M 6M
	b)	Write the characteristics of the laminar and turbulent flows. OR	OIVI
8.		The two reservoirs with surface level difference of 20m are to be connected by 1m dia pipe 6km long. Calculate the discharge when a cast iron pipe of roughness k=0.3mm is used. What will be the percentage increase in discharge if cast iron pipe were to be replaced by steel pipe of roughness k=0.1mm. neglect local losses	14M
9.	a)	Define the terms: model, prototype, model analysis, hydraulic similitude	6M
	b)	A 1/50 model of spillway was made and test was conducted with a water flow rate of $3m^3$ /s. The water velocity was found to be 2m/s. Estimate the water flow rate and velocity of the prototype.	8M
		OR	
10.		Explain distorted and undistorted models.	6M
	b)	Water is flowing through a pipe of diameter 30 cm at a velocity of 4m/s. Find the velocity of oil flowing in another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take 'G' of oil as 0.8.	8M
		Dag	e 1 of 1

Hall Ticket Number :							[]
• • • • • • • • • • •						J	R-19

II B Tech I Semester Supplementary Examinations March/April 2023

Code: 19A134T

	F	Iall Ticket Number :	D 10		
	C	ode: 19AC34T	R-19		
		II B.Tech. I Semester Supplementary Examinations March/Ap	oril 2023		
		Life Sciences for Engineers			
	٨	(Common to CE, ME & CSE) Nax. Marks: 70	Time: 3 Hou	irc	
		Inswer any five full questions by choosing one question from each unit (5x)		-	
		******		,	
		UNIT-I	Marks	CO	
		Describe meant by classification? Write the importance of Classification?	14M	CO1	
		OR			
		Write the structure of animal cell with labelled diagram?	14M	CO1	
		UNIT–II			
•		Describe nucleic acids? Write the structure and functions of nucleic acids?	14M	CO2	
		OR			
•		Describe the mechanism of enzyme action?	14M	CO2	
				000	
•		Explain the reaction of Electron Transport Chain?	14M	CO3	
	-)	OR Explain the Neuromuscular junctions?	7M	CO3	
. 6 k	а)))	Describe the Glycolysis?	7M 7M		
k)		7 101	000	
		UNIT-IV			
. 6	a)	Briefly describe the transcription and translation?	7M	C04	
k)	Write the importance of Genetic code?	7M	C04	
		OR			
		Discuss in detail about Gene Mapping?	14M	C04	
		UNIT–V			
•		Describe the DNA Microarray technique, types and applications?	14M	CO5	
		OR			
		Explain the various process of recombinant DNA technology?	14M	CO5	

	Hall Ticket Number :			
	Code: 19A133T	R-19		
	II B.Tech. I Semester Supplementary Examinations March/April 20	023		
	Mechanics of Materials			
	Answer any five full questions by choosing one question from each unit $(5x14 = 7)$: 3 Hou '0 Marks	-	
	*****	Marks	СО	BL
1.	UNIT–I A steel tie rod 20 mm diameter is encased in a copper tube of external dia. of 36mm and internal diameter of 24 mm with the help of washers and nuts. The nut on the tie rod is tightened and the assembly is subjected to a tensile load of 20kN. The temperature of the assembly is now raised to 80° C. Determine the resultant stresses in the rod and the tube. Take Es=210GPa, Ec=100 GPa, s= 11×10^{-6} / $^{\circ}$ C and			
	_c =18x10 ⁻⁶ / ⁰ C	14M	1	B1
2.	OR Define stress and explain the different types of stress. UNIT–II	14M	1	B4
3.	Draw the shear force & bending moment diagram for the simply supported beam carrying a central point load.	14M	2	B4
4.	OR Draw shear force and bending moment diagram for the beam shown below. Mark all salient values on them. Comment on point of contra flexure.			
	2kN/m GkN 3kN			
	A TE B			
	4 m 4 m+	14M	2	B4
5.	UNIT-III A beam of size 150 mm wide, 250 mm deep carries a uniformly distributed load of			
5.	w kN/m over entire span of 4 m. A concentrated load 1 kN is acting at a distance of 1.2m from the left support. If the bending stress at a section 1.8 m from the left support is not to exceed 3.25 N/mm2 find the load w	14M	3	B1
6.	OR Derive the expression for the shear stress in circular section of radius R & also derive			
	the maximum & average shear stress.	14M	3	B1
7.	UNIT-IV A simply supported beam of span 8.0 m is carrying a point load of 45 kN at the centre			
	in addition to self-weight of 3 kN/m. Determine the maximum slope and maximum deflection. Take $EI = 1 \times 10^7$ kN-m OR	14M	4	B4
8.	Obtain an expression for normal and tangential stresses on an inclined plane when an element subjected to bi-axial direct stresses. Also obtain the expressions for resultant stress and their direction	14M	4	B4
9.	UNIT-V A rectangular block of a material is subjected to a tensile stress of 100N/ mm ² on one plane and a tensile stress of 47N/ mm ² on a plane right angle to the earlier, together with a shear stress of 63N/ mm ² on all the planes. Determine i) the magnitude of principal stresses ii) the orientation of principal planes and iii) the maximum shear			
	stress. Use analytical method only.	14M	5	B4
10.	OR Derive the expression for maximum principal strain theory	14M	5	B1

2023		
	Irc	
Marks	СО	BL
7M	1	L1
7M	1	L1
7 101	1	LI
14IVI	1	L3
7 IVI	2	L1
7M	2	L1
14M	2	L3
14M	3	L2
	Ū	
14M	3	L1
Page 1	of 2	
	e: 3 Hor Marks 7M 7M 7M 14M 14M 14M	2023 Marks CO 7M 1 7M 1 7M 1 14M 1 14M 2 14M 2

7. Solve by the method of separation of variables

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y} + 2z$$
14M 4 L3
OR
8. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$
subject to the condition
 $u(0,t) = 0, u(L,t) = 0, t > 0 \text{ and } u(x,0) = 3\sin\left(\frac{fx}{L}\right), 0 < x < L.$
14M 4 L3
9. a) Find all values of k, such that
 $f(z) = e^x (\cos ky + i \sin ky) \text{ is analytic.}$
7M 5 L1
b) Show that the function $f(z) = z\overline{z}$ is differentiable but not
analytic at $z = 0.$
7M 5 L2
OR
10. Evaluate using Cauchy's theorem $\int_c \frac{z^3 e^{-z}}{(z-1)^3} dz$ where c is

$$|z-1| = \frac{1}{2}$$
. Using Cauchy's integral formula.

С	ode: 19A	132T		L		I			R-19	
			Seme	ester Su	pplemento	ary Exami	nations N	1arch/A	pril 2023	
						eying				
					(Civil Eng	gineering)				
	Max. M						<i>c</i>		Time: 3 Hours	
	Answer of	any five fi	ull que	estions by	y choosing o	ne questioi	n from eac	h unit (5)	(14 = 70 Marks)	
										Ν
	_					IIT–I				
•	Describ	e the diffe	erent ty	/pes of ch		-	ate the relat	ive advar	tages of each.	1
					C	DR				
•		he followi	•	and rodu	iced bearing,	b) Foro boy	oring and br	ock boarir		
	-	meridian	-		-	-	c declination		lg	
		of the mag		•		f) Local att				1
	, ,	0				, IT–II				
	Define t	he followi	ng: da	itum surfa			duced level,	bench m	ark, change point	,
	and par		C							1
					C	DR				
•		• •	•		ets were taker			•		
		e (m) - 0.0			00 15.00 20				80.00	
	Offset(n	,	40 4.			90 1.80	3.20 4.50	3.70	2.80	4
	Calcula	te the are	a by:	I. ITapezo	oidal rule, and	· · ·	on s ruie.			1
	UNIT-III									
•	The lengths and bearings of the sides of a closed traverse are represented below along with the latitudes and departures of known sides. Determine the bearing of AB and length of CD.									
		-		_ength(m)			Departure	0		
			AB	725.0						
		E	BC	1060.0	N62º30'E	+498.45	+940.24			
			CD	L	N37º36'E					
			DE	945.0	S55º18'W	-537.99	-776.92			
		ł	EA	577.2	S2º40'W	-576.63	-26.85			1
					C	DR				
i. a)	How is	the closing	g erroi	r in a trav	erse balanced	?				
b)	Describ	e the proc	cess o	f measuri	ng the horizor	ntal angle.				
						IT–IV				
						•			100 was set up a	
	R which is an intermediate point on a traverse leg AB. The following readings were take the staff held vertically.							I		
		Staff sec		Bearing	Vertical angle	e Intercept	Axial Hai	r reading		
		А		40º35'	-4º24'	2.21	1.9	•		
		В		22º35'	-5º12'	2.02	1.9	90		
	Calcula	te the leng	gth AE	and the	level differenc	e between A	A and B.			1
					C	DR				
						neat sketch	n the proce	dure of s	olving a two-poin	
	problem	n in plane	table	surveying		IT \/				1
	Drow	noot aleat	oh of -	oiroular	L	IT–V	ing notation	o thora -	D .	
		tangent	UT OF 8		curve and sho ard tangent		ing notation			
	,	of tanger	าсง		and tangent it of intersection	,	gle of defle			
		e of inters	•	,	g chord	,	ex distance			
	3,			,•	J	·/··P		-		
	j) Verse	d sine of	curve							1
	j) Verse	d sine of	curve		C	DR				1

ļ		all Ticket Number :	R-19	9	
	Co	de: 19A235T Il B.Tech. I Semester Supplementary Examinations March / April Basic Electronics, Electrical & Mechanical Technology (Civil Engineering)		3	_
	Mc			Hour: ;)	5
		PART-A			
			Marks	СО	Blooms Level
	-)	UNIT-I			
•	a)	State and explain the Ohm's Law?	7M	CO1	L1
	b)	Draw a neat sketches the construction of a Dc machine? OR	7M	CO1	L1
2.	a)	Explain the principle operation of DC generator?	7M	CO1	L1
	b)	Mention the applications of DC motor?	7M	CO1	L1
		UNIT–II			
-	a)	Enumerate the various losses in a transformer?	7M	CO2	L1&L3
	b)	Explain the principle operation of single phase transformer?	7M	CO2	L1&L3
		OR			
•	a)	Define the term of Efficiency and regulation of a transformer?	7M	CO2	L1&L3
	b)	Explain the principle operation of three phase induction motor?	7M	CO2	L1&L3
		UNIT–III			
-	a)	What are the applications of Diode?	7M	CO3	L1&L3
	b)	Explain the operation of bridge rectifiers?	7M	CO3	L1&L3
		OR			
5.	a)	Draw the block diagram of CRO?	7M	CO3	L1&L3
	b)	Explain the principle of CRT?	7M	CO3	L1&L3
		PART-B			
		UNIT-IV			
	a)	Why do we need a step Down Transformer in ARC Welding? Explain.	7M	CO4	L
	b)	Describe How Acetylene Gas is produced by using Calcium Carbide in Acetylene			
		cylinder?	7M	CO4	L
		OR			
5.	a)	Mechanical compression process of vapor compression cycle is replaced by a			
		thermal compression process in vapor absorption refrigeration system. Explain.	7M	CO5	L
	b)	Contrast between air cooling and air conditioning	7M	CO5	L
		UNIT-V			
•	a)	Explain working principle of Reciprocating Compressor with a neat sketch	7M	CO4	L
	b)	What do you mean by single stage and multi stage compression and discuss when you suggest single stage and multi stage compression in real time applications.	7M	CO4	L
		OR	7 101	004	L
	a)	Differentiate between two stroke with four stroke engines	7M	CO5	L
	b)	Interpret the provision of Clearance Volume in IC Engines and discuss about its			
	•	effect on cycle efficiency?	7M	CO5	L

~	Iall Ticket Number :	19
C	II B.Tech. I Semester Supplementary Examinations March/April 202	23
	Building Materials & Construction	
	(Civil Engineering)	
	Max. Marks: 70 Time: 3	
F	Answer any five full questions by choosing one question from each unit (5x14 = 70 *********	Marks
	UNIT–I	Marks
	Write the properties of building stones and their structural requirements.	14N
•	OR	1 110
. a)	Briefly describe dressing of stone and preservation of stone?	7N
b)	Write the standards for good quality of bricks.	7N
	UNIT–II	
	Describe different types of cement and their uses. Define slurry, clinker and	
	function of gypsum in cement.	14N
	OR	71
.a) b)	Enumerate the properties of aluminum? Explain the ingredients of Cement?	7N 7N
D)		71
	UNIT–III	
. a)	Describe various parts of exogenous tree at any cross-section.	8N
b)	Explain different methods of seasoning with advantages and disadvantages?	61
	OR	
. a)	Explain the seasoning of timber?	7N
b)	Give the defects in timber?	71
	UNIT-IV	4 4 5
	Draw and explain the plan and elevation of a one and a half brick wall in English bond OR	14N
	Explain different types of shallow foundations used for different structures, in	
•	various conditions, with neat diagrams.	14N
	UNIT–V	
. a)	Explain about the king post truss with a neat sketch?	7N
b)	Write down the structural component of a building and explain each in brief	7N
	OR	
. a)	State briefly the requirements of a good staircase.	71
b)	Explain raft foundation with a sketch	7N