Hall Ticket Number :
R-19
Code: 19A131T
II B.Tech. I Semester Supplementary Examinations July/August 2022
Building Materials and Construction
(Civil Engineering)
Time: 3 Hours Max. Marks: 70
5x14 = 70 Marks)
$* * * * * * * * *$
Marks
UNIT-I

1. a) Briefly describe dressing of stone and preservation of stone? 7M
b) Write the standards for good quality of bricks. 7M
OR
2. a) Differentiate between clamp burning and kiln burning. 7M
b) Describe the classifications of common bricks? 7M
UNIT-II
3. a) Classify the different types of gypsum and glass. 7M
b) Enumerate the properties of aluminum? 7M
OR
4. a) Write manufacturing methods of tile and different uses in building 7M
b) Elucidate the process of manufacture of tiles. 7M
UNIT-III
5. a) Explain the seasoning of timber? 7M
b) Give the defects in timber? 7M
OR
6. a) Explain the classification of wood used in buildings? 7M
b) Explain the types of preservatives used for timber in details 7M
UNIT-IV
7. a) List the various types of foundations and Explain them? 7M
b) Give a list of types of bonds in brick masonry 7M
OR
8. Write about the purpose of a footing and explain clearly about shallow and spread footing? 14M
UNIT-V
9. a) State briefly the requirements of a good staircase.7M
b) Explain raft foundation with a sketch 7M
OR
10. Explain different types of Lintels, Arches and Stair cases and their purposes 14M

Code: 19A134T

|| B.Tech. I Semester Supplementary Examinations July/August 2022

Fluid Mechanics

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. State Pascal's law. Derive the equation for the same.

OR

2. An open cylindrical tank of height 4 m and cross sessional area $0.1 \mathrm{~m}^{2}$ contains water upto a height of 2.5 m and above it an oil of specific gravity 0.8 for a depth of 1 m .
Find the pressure intensity of (i) surface of oil (ii) the interface between the two liquids (iii) the base of the tank.

UNIT-II

3. Define and distinguish between stream line, path line and streak line.

OR

4. Water is flowing vertically upwards through a pipe line having diameter 1 m and 0.5 m at the base and top respectively. The pressure at the lower end is 450 mm of Hg , while the pressure at the upper end is $20 \mathrm{kN} / \mathrm{m}^{2}$. If the loss of head is 20% of difference in velocity head, calculate the discharge. The difference in the elevation is 4 m .

UNIT-III

5. Derive Darcy-Weisbach equation for turbulent flows.

OR

6. A pipeline carrying water has a diameter of 0.5 m and is 2.0 km long. To increase the delivery another pipeline of the same diameter is introduced parallel to the first pipe in the second half of its length. Find the increase in discharge if the total head loss in both the cases is 15 m . Assume $\mathrm{f}=0.02$ for all the pipes.

UNIT-IV

7. a) Explain about Reynolds Experiment with the help of a neat sketch.
b) Write the characteristics of the laminar and turbulent flows.

OR

8. A smooth pipe of diameter 80 mm and 800 m long carries water at the rate of $0.48 \mathrm{~m} 3 / \mathrm{min}$. calculate the loss of head, wall shearing stress, center line velocity and shear stress at 30 mm from pipe wall. Also calculate thickness of laminar sub layer. Take kinematic viscosity as 0.015 stokes.

UNIT-V

9. Define the term dimensional analysis and model analysis. Describe the Rayleigh's method for dimensional analysis with example.

OR
10. a) State Buckingham's π-theorem.
b) Assuming that the viscous force F, exerted by a fluid on a sphere of diameter D depends on the viscosity , mass density of the fluid " ρ ", and the velocity of the sphere v , obtain the expression for the viscous force.
\square
Code: 19AC34T
II B.Tech. I Semester Supplementary Examinations July/August 2022 Life Sciences for Engineers
(Common to CE, ME \& CSE)
Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT - Marks co $\underset{\substack{\text { Blooms } \\ \text { Level }}}{* * * * * * * * *}$

UNIT-I

1. Describe meant by classification? Write the importance of Classification?
14M CO1

OR

2. a) Explain the five kingdom classification of living organisms? 7M CO1
b) Describe is Endoplasmic reticulum? Write their structure and important functions and draw the labelled diagram?
7M CO1
UNIT-II
3. a) Describe the structure of DNA \& RNA?
7M CO2
b) Explain Lock and Key Model and Induced fit model?
7 M CO 2

OR

4. Describe the Biomolecules and write functions and types of biomolecules? $14 \mathrm{M} \quad \mathrm{CO} 2$
UNIT-III
5. Describe about Bioenergetics and types of Bioenergetics?

OR

14 M CO 3
6. Discuss the mechanism of photosynthesis in plants?
14M CO3

UNIT-IV

7. a) Describe the sequential steps in the replication of DNA? 7M C04
b) Write the importance of Genetic code?
7M C04

OR

8. Describe the Gene Disorders in Humans?
14M C04

UNIT-V

9. Describe the Biosensors, types and applications?
14M CO5

OR

10. Explain the Transgenic species and process in animals?
14M CO5

Code: 19A133T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Mechanics of Materials

(Civil Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

$* * * * * * * *$
 UNIT-I

Marks CO | Blooms |
| :---: |
| Level |

1. A bar is subjected to tensile test with a diameter of 30 mm , tensile load is 54 KN , gauge length 300 mm and extension of the bar is 0.112 mm and change in diameter 0.00366 . Determine poisons ratio and three elastic constants.

OR

2. Draw the stress strain diagram for mild steel and explain the salient points

UNIT-I

3. Draw the shear force \& bending moment diagram for the simply supported beam carrying a eccentric point load.

OR

4. A simply supported beam $A B$ of span 8 m is subjected to a uniformly distributed load of $30 \mathrm{KN} / \mathrm{m}$ over the left half of span and a concentrated moment of $48 \mathrm{KN}-\mathrm{m}$ acting at a distance of 6 m from left support A. Draw the shear force and bending moment diagrams. Also find the position and magnitude of maximum bending moment.

14 M CO 2

UNIT-III

5. The tension flange of a cast iron I section beam is 240 mm wide and 50 mm deep, the compression flange is 100 mm wide 20 mm deep where as the web is $300 \mathrm{~mm} \times 30 \mathrm{~mm}$. Find load per meter run which can be carried over a 4 meters span by a simply supported beam. If the maximum permissible stress are 90 MPa in compression \& 24 MPa in tension.

OR

6. Derive an equation for distribution of transverse shear stresses in a beam. State the assumptions made.

UNIT-IV

7. Explain Moment area theorems with neat sketch \& A simply supported beam of span 8.0 m is carrying a point load of 45 kN at the centre in addition to self weight of $3 \mathrm{kN} / \mathrm{m}$. Determine the maximum slope and maximum deflection. Take $\mathrm{El}=1 \times 10^{7} \mathrm{kN}-\mathrm{m}$

14M CO4

OR

8. At a point in a strained material the principal stresses are $100 \mathrm{~N} / \mathrm{mm} 2$ (tensile) and $60 \mathrm{~N} / \mathrm{mm} 2$ (compressive). Determine normal stress, shear stress, resultant stress on a plane inclined at 30 degrees to the axis of the major principal stress. Also determine the maximum shear stress at the point.

UNIT-V

9. Draw \& Explain morh's circle when a body is subjected to two mutually perpendicular principal tensile stress of unequal intensities.
10. Explain about Maximum Principal Stress theory

Code: 19AC31T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Partial Differential Equations and Complex Variables

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the Laplace Transform of $e^{2 t}+4 t^{3}-2 \sin 3 t+3 \cos 3 t$

7M CO1
b) Find the L.T of $\left(t^{2}+1\right)^{2}$

7M CO1

OR

2. Find $L\left\{e^{-3 t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$

14M CO1

UNIT-II

3. Find inverse L.T of $\frac{5 s-2}{s^{2}(s+2)(s-1)}$

OR

4. Using convolution theorem, find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$

UNIT-III

14M CO2
5. Obtain the Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence Show that

OR

6. Find the half range sine series for $f(x)=x(\pi-x)$ in $0<x<\pi$ deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{32}$

UNIT-IV

7. Use separation of variables to solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$ in the form $u=f(x) g(y)$. Obtain the solution satisfying $u=0, \frac{\partial u}{\partial x}=1+e^{-3 y}$ when $x=0$ for all values of y .

OR

8. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)= \begin{cases}x & ; 0 \leq x \leq 50 \\ (100-x) & ; 50 \leq x \leq 100\end{cases}
$$

Find the temperature $u(x, t)$ at any time.

UNIT-V

9. Find the conjugate harmonic function of the harmonic function $u=x^{2}-y^{2}$

14M CO4

OR

10. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where $c:|z|=3$.

|| B.Tech. I Semester Supplementary Examinations July/August 2022 Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Distinguish between closed and open traverse.
b) What is closing error' in a traverse?

OR

2. Two stations A and B are not intervisible due to rising ground between them. Explain with a neat sketch how the line $A B$ can be ranged if both the stations are visible from intermediate points.

UNIT-II

3. The formulation width of a road is 10 m and the side slopes is $2: 1$. The surface of the ground has a traverse slope of 1 in 10 . If the depths of cutting at the centres of three sections 60 m apart are 1.5, 2.5 and 2.0 m respectively, determine the volume of earth work.

OR

4. The following consecutive readings were taken with a level and 4 m leveling staff on a continuously sloping ground at common intervals of 30 m .
0.905(on A), 1.745, 2.345, 3.125, 3.725, 0.545, 1.390, 2.055, 2.955, 3.455, 0.595, 1.015, 1.850, 2.655, and 2.945 9(on B).

The RL of A was 395.500. calculate the RLs of difference points and find the gradient of the line $A B$.

UNIT-III

5. a) Describe how you would measure vertical angles.
b) How is the closing error in a traverse balanced?

OR
6. a) How can the height of a tower be determined when it is inaccessible?
b) What are the methods of locating interior details in theodolite traversing? Describe the methods of checking the accuracy of close and open traverse.

UNIT-IV

7. What is a two-point problem? Explain with a neat sketch the procedure of solving a two-point problem in plane table surveying.
8. a) What is orientation? What are the methods of orientation? Describe the methods with a sketch.
b) What are the errors that may occur in plane tabling?

UNIT-V

9. What are the different types of curves? Draw neat sketches of each.

OR

10. A road bend which deflects by 90° is to be designed for a maximum speed of $130 \mathrm{~km} / \mathrm{hr}$, a maximum centrifugal ratio of $1 / 4$, and a maximum rate of change of radial acceleration of $35 \mathrm{~cm} / \mathrm{s}^{3}$. The curve should consist of a circular arc combined with two cubic spirals. Calculate :
a. The radius of circular arc,
b. The requisite length of the transition curve, and
c. The total length of the composite curve.
\square
Code: 19A235T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Basic Electronics, Electrical \& Mechanical Technology

(Civil Engineering)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
Use separate booklets for Part-A \& Part-B

Time: 3 Hours

PART-A

