## Code: 19A232T

II B.Tech. I Semester Supplementary Examinations March/April 2023

## Circuit Theory

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks )

## UNIT-I

1. a) Apply Delta to Star conversion and calculate the Star connection resistances.

b) Recall the Voltage-Current relationship for Resistor, Inductor and Capacitor.
$\begin{array}{lll}7 M & 1 & 3\end{array}$
7M $1 \begin{array}{lll} & 1\end{array}$
OR
2. a) Explain Super-Mesh with an example.
b) Explain super-node with an example.

## UNIT-II

3. a) List out different types of $A C$ waveforms.
b) Determine the expression for Resonant frequency of a series RLC circuit.

OR
4. a) Define i) resonant frequency ii) quality factor iii) Band width
b) Explain the parallel Resonance and derive expressions for Resonant frequency and Band width.

8M 22

## UNIT-III

5. Three impedances of $10+\mathrm{j} 10$ are connected in star to a $240 \mathrm{~V}, 3-\varnothing 50 \mathrm{~Hz}$ supply. Calculate the line currents and phase voltages at the load.

## OR

6. a) Define phase and phase sequence.

4M 31
b) Calculate the line currents and phase currents for the following network.


## UNIT-IV

7. a) Explain Super-position theorem with an example and mention the limitations.
b) Calculate current i using Thevenin's theorem.

8. a) Explain the compensation theorem
b) Calculate current i using Norton's theorem.


## UNIT-V

9. a) Define Graph and Develop the Graph for the following network.

b) Define i) link ii) Twig iii) tree iv) co-tree with a suitable diagram
$\begin{array}{lll}7 M & 6 & 3\end{array}$
7M 61

## OR

10. Develop the fundamental cut-set and fundamental tie-set matrices for the following graph.



## Code: 19A337T

II B.Tech. I Semester Supplementary Examinations March/April 2023

## Fluid Mechanics and Hydraulic Machinery

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## UNIT-I

i) Steam Line
ii) Streak Line
iii) stream Tube

## OR

2. a) Explain the property viscosity of a fluid. Also describe its variation with temperature. 7M
b) Explain the various types of fluid flows. 7M

## UNIT-II

3. a) Describe the Reynolds's experiment with neat sketch
b) Explain the minor losses in pipes briefly.

## OR

4. a) A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm
respectively is used to measure the flow of water. The reading of differential
manometer connected to the inlet and the throat is 20 cm of mercury. Determine
the rate of flow. Tale $\mathrm{C}_{\mathrm{d}}=0.98$.
b) State the momentum equation and derive an expression for the force exerted by a
flowing fluid on a pipe bend.

## UNIT-III

5. A jet of water having a velocity of $35 \mathrm{~m} / \mathrm{sec}$ impinges on a series of vanes moving with a velocity of $20 \mathrm{~m} / \mathrm{sec}$. The jet makes an angle of $30^{\circ}$ to the direction of motion of vanes when entering and leaves at an angle of $120^{\circ}$. Draw the triangles of velocities at inlet and outlet and find i) the angles of vane tips so that water enters and leaves without shock ii) the work done per unit weight of water entering the vanes iii) the efficiency.

## OR

6. Explain the elements of hydroelectric power station with neat sketch.

## UNIT-IV

7. a) Explain the various parts of Kaplan turbine and its working with the neat sketch
b) Define the unit quantities and describe them with expressions

## OR

8. a) Define specific speed of the turbine and derive an expression for it. 7M
b) Explain the classification of turbines.

## UNIT-V

9. a) Define centrifugal pump. Explain the working of single stage centrifugal pump with neat sketch.

7M
b) Define slip, percentage of slip and negative slip of the reciprocating pump 7M

OR
10. a) Derive an expression for the work done by the impellor of a centrifugal pump.
b) Explain the characteristic curves of the centrifugal pumps.

## Code: 19AC31T

|| B.Tech. I Semester Supplementary Examinations March/April 2023

## Partial Differential Equations and Complex Variables

 (Common to CE, EEE, ME \& ECE)Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Find the L.T of $e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$
b) Find $L\left\{e^{3 t} \sin ^{2} t\right\}$

## OR

2. Find $L\{f(t)\}$, where $f(t)$ is aperiodic function of the period $2 \pi$ and it is given by $f(t)= \begin{cases}\sin t, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}$

## UNIT-II

3. a) Find $L^{-1}\left\{\frac{s+3}{s^{2}-10 s+29}\right\}$

## OR

4. Using convolution theorem, find $L^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right\}$

## UNIT-III

5. Express $f(x)=x-\pi$ as Fourier series in the interval $-\pi<x<\pi$

14M
3 L2

## OR

6. Find the Fourier Series to represent $f(x)=x^{2}-2$ when

$$
-2 \leq x \leq 2
$$

## UNIT-IV

7. Solve by the method of separation of variables

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial y}+2 z
$$

8. Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the condition

$$
u(0, t)=0, u(L, t)=0, t>0 \text { and } u(x, 0)=3 \sin \left(\frac{\pi x}{L}\right), 0<x<L .
$$

## UNIT-V

9. a) Find all values of $k$, such that $f(z)=e^{x}(\cos k y+i \sin k y)$ is analytic.
b) Show that the function $f(z)=z \bar{z}$ is differentiable but not analytic at $z=0$.

## OR

10. Evaluate using Cauchy's theorem $\int_{c} \frac{z^{3} e^{-z}}{(z-1)^{3}} d z$ where c is
$|z-1|=\frac{1}{2}$. Using Cauchy's integral formula.

## Code: 19A234T

2023

## Switching Theory and Logic Design

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## Marks

1. a) Solve the Following
i) $(446.25) 10=($ $\qquad$ ) 16
ii) $(1010111.001) 2=($ $\qquad$ )8
iii) $(11 \mathrm{C} . \mathrm{DC}) 16=(\quad)^{2}$ 2
b) A 7 bit hamming code is transmitted through a noisy channel. Find the error assuming a single error has occurred. The given message is 1010101

## OR

2. a) State and prove Demorgan's theorem for three variables
b) What are Universal gates? Realize AND and OR gates using NAND gates.

## UNIT-II

3. a) Show that $A B C+A B C^{1}+A B^{1} C+A^{1} B^{1} C+A^{1} B C^{1}=B^{1} C+A B+A^{1} B C^{1}$
b) Expand $Y=A+B^{1} C$ in SOP form 7M

## OR

4. a) Simplify using $K$ map $F(A, B, C, D)=\Sigma(0,2,4,5,6,7,8,10,13,15)$ and design using NAND gates.
5. a) Draw and explain the block diagram of $n$-bit parallel adder.
b) What is programmable logic array? How it differs from PROM.
6. a) What is encoder? Design octal to binary encoder.
b) Design a BCD to Excess- 3 code converter using PAL.

## UNIT-IV

7. a) Design a four bit ring counter. Explain with example.
b) Write the excitation table of SR \& D Flip-Flops
8. a) Convert JK Flip-Flop into SR Flip-Flop.
b) Design Mod-12 synchronous counter using J-K flip -flops.

## UNIT-V

9. a) Draw the ASM chart and state diagram for the following state transitions, start from the initial state $T_{1}$, then if $X Y=00$ go to $T 2$, if $X Y=01$ go to $T 3$, if $X Y=10$ go to $T 1$, otherwise go to $T 3$.
b) Discuss the various blocks of ASM chart.

## OR

10. Find the equivalence partition and a corresponding reduced machine in standard form for the machine given in the table

| PS | $\mathrm{NS}, \mathrm{Z}$ |  |
| :---: | :---: | :---: |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
| A | $\mathrm{E}, 0$ | $\mathrm{D}, 1$ |
| B | $\mathrm{~F}, 0$ | $\mathrm{D}, 0$ |
| C | $\mathrm{E}, 0$ | $\mathrm{~B}, 1$ |
| D | $\mathrm{F}, 0$ | $\mathrm{~B}, 0$ |
| E | $\mathrm{C}, 0$ | $\mathrm{~F}, 1$ |
| F | $\mathrm{~B}, 0$ | $\mathrm{C}, 0$ |

Hall Ticket Number :

## Code: 19A231T

## R-19

II B.Tech. I Semester Supplementary Examinations March/April 2023

## Analog Electronics

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. With neat circuit diagram, Explain the operation of Colpitts oscillator using BJT and derive the expression for its frequency of oscillations.

|  | UNIT-I |  |  |
| :---: | :---: | :---: | :---: |
| 1. | With neat circuit diagram, Explain the operation of Colpitts oscillator using BJT and derive the expression for its frequency of oscillations. | 14M | CO1 L2 |
|  | OR |  |  |
| 2. a) | With neat sketch, Explain the block diagram representation of a feedback amplifier. | 9M | CO1 L2 |
| b) | List out the advantages and disadvantages of negative feedback amplifier. | 5M | CO1 L1 |
|  | UNIT-II |  |  |
| 3. | Examine the principle operation of a practical integrator circuit with its frequency response for an applied sine input signal | 14M | CO2 L2 |
|  | OR |  |  |
| 4. a) | With neat diagram explain the operation of V-I convertor. | 7M | CO2 L2 |
| b) | Design Op-amp Differentiator that differentiate an input signal with $\mathrm{f}_{\mathrm{max}}=100 \mathrm{~Hz}$. | 7M | CO2 L6 |

## UNIT-III

5. Explain the working principle and operation of Astable Multi-vibrator using OpAmp with relevant sketch.
OR
6. Discuss the working principle of Sample and Hold circuits with relevant sketch.
14M CO3

## UNIT-IV

7. Explain the working principle of Monostable Multivibrator using IC555 timer with relevant sketch.
14M CO4

## OR

8. Explain the first order High-pass RC Active filter with its relevant expression. $14 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$

## UNIT-V

9. Explain the working principle Servo Tracking ADC and Dual Slope ADC with a neat block diagram.
10. Explain the working principle parallel Comparator A/D converter with a neat block diagram.
