	ŀ	Hall Ticket Number :		-	
			-19		
	C	Il B.Tech. I Semester Supplementary Examinations March/April 20 Circuit Theory)23	_	
		(Electrical and Electronics Engineering)			
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 7 ********	: 3 Hours 0 Marks)		
		UNIT–I	Marks	со	BL
1.	a)	Apply Delta to Star conversion and calculate the Star connection resistances.			
		$\begin{array}{c} R_{3} \\ R_{3} \\ 3 \\ \end{array}$			
		C $R_2 = 3.2$ B	7M	1	3
	b)	Recall the Voltage-Current relationship for Resistor, Inductor and Capacitor.	7M	1	1
	2)	OR		•	•
2.	a)	Explain Super-Mesh with an example.	7M	1	2
	b)	Explain super-node with an example.	7M	1	2
		UNIT-II			
3.	a)	List out different types of AC waveforms.	7M	2	1
	b)	Determine the expression for Resonant frequency of a series RLC circuit.	7M	2	3
		OR			
4.	a)	Define i) resonant frequency ii) quality factor iii) Band width	6M	2	1
	b)	Explain the parallel Resonance and derive expressions for Resonant frequency ar		2	2
		Band width.	8M	2	2
5.		UNIT-III Three impedances of 10+j10 are connected in star to a 240 V, 3- Ø 50 F	lz 14M	3	3
		supply. Calculate the line currents and phase voltages at the load. OR	14101	3	3
6.	a)	Define phase and phase sequence.	4M	3	1
	b)	Calculate the line currents and phase currents for the following network.		-	
	- /	R			
		20060			
		200L=120° 200L=240' 20L30'n			
		B			

10M 3 3

7M

4 2

UNIT–IV

- 7. a) Explain Super-position theorem with an example and mention the limitations.
 - b) Calculate current i using Thevenin's theorem.

7M 4 2

4 3

7M

8. a) Explain the compensation theoremb) Calculate current i using Norton's theorem.

7M 4 3

9. a) Define Graph and Develop the Graph for the following network.

b) Define i) link ii) Twig iii) tree iv) co-tree with a suitable diagram

OR

10. Develop the fundamental cut-set and fundamental tie-set matrices for the following graph.

14M 6 3

7M

6 1

	Ha	all Ticket Number :			
	Co	de: 19A233T			
		II B.Tech. I Semester Supplementary Examinations March/April 2023 Electrical Machines-I (Electrical and Electronics Engineering)	3		
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 N			
		UNIT-I	Marks	со	BL
1.	a)	Derive the EMF equation of DC generator.	8M	1	2
	b)	A 4-Pole, wave wound d.c. shunt generator has a useful flux per pole of 0.07Wb. Calculate the induced e.m.f. when running at 900 r.p.m.	6M	1	2
2	c)	OR Comment on the use of internales and commenceting winding in a DC machine	CN 4	4	4
Ζ.	a) b)	Comment on the use of inter poles and compensating winding in a DC machine In a 200 V compound generator, the armature, series and shunt windings have resistances of 0.25, 0.15 and 50 respectively, the load consists of 100 lamps, each rated at 60 W, 220 V. Find the total emf and armature current when the	6M	1	1
3.		machine is connected for long shunt.UNIT–IIAn 8-pole DC generator with 778 wave-connected armature conductors and	8M	1	3
		running at 500rpm supplies a load of 12.5 resistance at terminal voltage of 250V. The armature resistance is 0.24 and the field resistance is 250. Find the armature current, induced emf and the flux/pole.	14M	2	2
		OR			
4.	a)	Mention the applications of DC generators.	6M	2	1
	b)	A DC shunt generator delivers 450A at 230V and resistance of shunt field and armature are 50 and 0.03 respectively. Calculate the generated emf.	8M	2	3
5.	a)	Explain with diagram the brake test on a DC motor.	8M	3	2
	b)	Mention the advantages and demerits of Swinburne's test. Why this test cannot be perfumed on a series motor.	6M	3	1
~		OR			
6.		Hopkinson's test was conducted on two shunt motors. The supply current was 15A at 200V. The generator output current was 85A. The field currents of motor and generator were 2.5A and 3A respectively. The armature resistance of each machine was 0.05. Find the efficiency of each machine under the above loading	14M	3	3
		conditions.		0	0
7.	a) b)	Describe the experimental test procedure to separate the core losses of a transformer. A 10 KVA, 500/250 V single phase transformer has its maximum efficiency of 94%	7M	4	1
		when delivering 90% of its rated output at unity pf. Estimate its efficiency when delivering its full load output at pf of 0.8 lagging.	7M	4	3
8.		Outline the purpose of Sumpner's test and explain how it is conducted on two identical single phase transformers.	14M	4	2
9.	a)	Explain open connection of transformer with necessary diagram. Also, point out its advantages and disadvantages.	6M	5	2
	b)	Two 1-Ph transformers A and B are rated at 250KVA each are operated in parallel on both sides. The impedances of transformer A and B are (1+j6) and (1.2+j4.8) respectively. Compute the load shared by each when the total load is 500KVA at 0.8p.f lagging. Comment on the result.	8M	5	3
		OR			
10.		A 1100/400V, 1-phase transformer gave the following test results:			
		Open circuit test: 1100V, 2A, 180W on I.v. side			
		Short circuit test 20V, 25A, 20W on h.v. side Calculate the equivalent circuit constants. Also draw the equivalent circuit.	14M	5	3

	F	Hall Ticket Number :	
		R-19	>
	Ν	Il B.Tech. I Semester Supplementary Examinations March/April 2023 Fluid Mechanics and Hydraulic Machinery (Electrical and Electronics Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	lours
		******* UNIT–I	Marks
1. a	a)	Calculate the Density, Specific weight and Specific gravity of One liter of liquid, which weighs 7N.	7M
b))	Define the following i) Steam Line ii) Streak Line iii) stream Tube OR	7M
2. a t	a) D)	Explain the property viscosity of a fluid. Also describe its variation with temperature. Explain the various types of fluid flows.	7M 7M
3. a t	a) D)	Describe the Reynolds's experiment with neat sketch Explain the minor losses in pipes briefly.	7M 7M
4. a	a)	OR A horizontal venturimeter with inlet and throat diameters 30cm and 15cm respectively is used to measure the flow of water. The reading of differential manometer connected to the inlet and the throat is 20 cm of mercury. Determine the rate of flow. Tale C_{d} =0.98.	7M
t))	State the momentum equation and derive an expression for the force exerted by a flowing fluid on a pipe bend.	7M
5.		UNIT-III A jet of water having a velocity of 35 m/sec impinges on a series of vanes moving with a velocity of 20 m/sec. The jet makes an angle of 30 ^o to the direction of motion of vanes when entering and leaves at an angle of 120 ^o . Draw the triangles of velocities at inlet and outlet and find i) the angles of vane tips so that water enters and leaves without shock ii) the work done per unit weight of water entering the	
6.		OR	14M 14M
	-)	UNIT-IV Explain the various parts of Kaplan turbine and its working with the neat sketch	7M
7. a t	a) D)	Define the unit quantities and describe them with expressions OR	7M
8. a t	a) D)	Define specific speed of the turbine and derive an expression for it. Explain the classification of turbines.	7M 7M
9. a	a)	UNIT-V Define centrifugal pump. Explain the working of single stage centrifugal pump with neat sketch.	7M
b))	Define slip, percentage of slip and negative slip of the reciprocating pump OR	7M
10. a	a) D)	Derive an expression for the work done by the impellor of a centrifugal pump. Explain the characteristic curves of the centrifugal pumps.	7M 7M

Hall Ticket Number :			
Code: 19AC31T	R-19		
II B.Tech. I Semester Supplementary Examinations March/Apri Partial Differential Equations and Complex Variables			
(Common to CE, EEE, ME & ECE)	ne: 3 Ho		
Answer any five full questions by choosing one question from each unit (5x14			
	Marks	СО	BL
1. a) Find the L.T of $e^{-3t} \left(2\cos 5t - 3\sin 5t \right)$	7M	1	L1
b) Find $L\{e^{3t}\sin^2 t\}$	7M	1	L1
OR	7 101	1	LI
2. Find $L\{f(t)\}$, where $f(t)$ is aperiodic function of the			
$(\sin t, 0 < t < f)$			
period $2f$ and it is given by $f(t) = \begin{cases} \sin t, & 0 < t < f \\ 0, & f < t < 2f \end{cases}$	4 4 5 4		
	14M	1	L3
3. a) Find $L^{-1}\left\{\frac{s+3}{s^2-10s+29}\right\}$	714		
	7M	2	L1
b) Find $L^{-1}\left\{\frac{2s+12}{s^2+6s+13}\right\}$			
(s +0s+15) OR	7M	2	L1
4. Using convolution theorem , find $L^{-1}\left\{\frac{1}{\left(s^2+a^2\right)^2}\right\}$			
$\left(s^2 + a^2\right)^2$	4 4 5 4		
	14M	2	L3
5. Express $f(x) = x - f$ as Fourier series in the interval			
-f < x < f	14M	3	L2
OR			
6. Find the Fourier Series to represent $f(x) = x^2 - 2$ when			
$-2 \le x \le 2.$	14M	3	L1
	D. 1	- { - 2	
	Page 1	OT 2	

7. Solve by the method of separation of variables

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y} + 2z$$
14M 4 L3
OR
8. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$
subject to the condition
 $u(0,t) = 0, u(L,t) = 0, t > 0 \text{ and } u(x,0) = 3\sin\left(\frac{fx}{L}\right), 0 < x < L.$
14M 4 L3
9. a) Find all values of k, such that
 $f(z) = e^x (\cos ky + i \sin ky) \text{ is analytic.}$
7M 5 L1
b) Show that the function $f(z) = z\overline{z}$ is differentiable but not
analytic at $z = 0.$
7M 5 L2
OR
10. Evaluate using Cauchy's theorem $\int_c \frac{z^3 e^{-z}}{(z-1)^3} dz$ where c is

$$|z-1| = \frac{1}{2}$$
. Using Cauchy's integral formula.

L	Code: 19A234T					R-19	
	II B.Tech. I Seme	ster Supp	lementary Fx	aminations	March/A	April 2023	
			Theory and			(pm 2020	
		•	and Electronic	•			
	Max. Marks: 70				97	Time: 3 Hours	
	Answer any five full ques	tions by ch	noosing one que	stion from ec	ich unit (5	x14 = 70 Marks)	
	, , ,	,	*******		·	,	
							Ма
	Solve the Following		UNIT–I				
a)	Solve the Following i) (446.25)10 = ()16 i	i) (1010111 001);	$P = \ell$	NQ		
	iii) (11C.DC)16 = (1) (1010111.001)2	. – (0		ç
b)		-	through a noisy	channel Find	the error a	assuming a single	,
ω,	error has occurred. The						Į
			OR				
a)	State and prove Demorg	an's theorei	m for three variab	les			-
b)					gates.		-
	Ū		UNIT-II	Ū	0		
a)	Show that ABC + A B C ¹	+ AB ¹ C+A ¹		-AB+A ¹ BC ¹			-
b)							
- /			OR				
a)	Simplify using K map F(A,	B, C, D) =	(0, 2, 4, 5, 6, 7, 8,	10, 13, 15) an	d design us	ing NAND gates.	
b)	Simplify $F = m (0, 1,)$	4, 5, 6, 9,	11, 12, 13, 14,	15) + d (7, 8) using tab	oular method and	
	implement using NOR ga				-		-
			UNIT–III				
a)	•						-
b)	What is programmable lo	gic array?	How it differs from OR	N PROM.			
a)	What is encoder? Design	octal to bir	•				-
b)	0						-
			UNIT–IV				
a)	Design a four bit ring cou	nter. Explai	n with example.				-
b)	Write the excitation table	of SR & D	• •				-
,			OR				
a)		•	•				(
b)	Design Mod-12 synchron	ous counte	· · ·	pps.			1
,			UNIT-V				
a)	Draw the ASM chart and state T ₁ , then if XY=00 go			•			
b)	-		÷			e go to 13.	
D,			OR				-
	Find the equivalence pa	rtition and a	-	educed mach	ine in star	dard form for the	
	machine given in the tabl						
	Ŭ [PS	N	S,Z			
	_		X=0	X=1			
	-	<u>A</u>	E,0	D,1			
	-	B C	F,0	D,0			
			<u> </u>	B,1			

D E F F,0 C,0 B,0 ***

B,0 F,1 C,0

	ŀ	Hall Ticket Number :							
	С	ode: 19A231T	R-19						
	II B.Tech. I Semester Supplementary Examinations March/April 2023								
		Analog Electronics							
		(Electrical and Electronics Engineering)							
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********									
		UNIT–I	Marks	СО	BL				
1.		With neat circuit diagram, Explain the operation of Colpitts oscillator using BJT							
		and derive the expression for its frequency of oscillations.	14M	CO1	L2				
		OR							
2.	a)	With neat sketch, Explain the block diagram representation of a feedback							
		amplifier.	9M	CO1	L2				
	b)	List out the advantages and disadvantages of negative feedback amplifier.	5M	CO1	L1				
3.		UNIT-II							
З.		Examine the principle operation of a practical integrator circuit with its frequency response for an applied sine input signal	14M	CO2	L2				
		OR							
4.	a)	With neat diagram explain the operation of V-I convertor.	7M	CO2	L2				
	b)	Design Op-amp Differentiator that differentiate an input signal with f _{max} =100Hz.	7M	CO2	L6				
		UNIT–III							
5.		Explain the working principle and operation of Astable Multi-vibrator using Op-	4 4 5 4	000	10				
		Amp with relevant sketch. OR	1411	CO3	L2				
6.		Discuss the working principle of Sample and Hold circuits with relevant sketch.	14M	CO3	12				
0.		Discuss the working principle of Sample and Hold circuits with relevant sketch.	14101	005	LZ				
		UNIT–IV							
7.		Explain the working principle of Monostable Multivibrator using IC555 timer							
		with relevant sketch.	14M	CO4	L2				
		OR							
8.		Explain the first order High-pass RC Active filter with its relevant expression.	14M	CO4	L2				
0		UNIT-V							
9.		Explain the working principle Servo Tracking ADC and Dual Slope ADC with a neat block diagram.	14M	CO5	12				
		OR		000					
10.		Explain the working principle parallel Comparator A/D converter with a neat							
		block diagram.	14M	CO5	L2				
