Hall Ticket Number :
R-19
Code: 19A333T
II B.Tech. I Semester Supplementary Examinations July/August 2022
Basic Thermodynamics(Mechanical Engineering)Time: 3 HoursMax. Marks: 70Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)$* * * * * * * * *$

UNIT-I

1. a) Classify the types of thermodynamic systems with the help of suitable example. 7M
b) Identify the differences between open system and closed system in thermodynamics.
OR
2. A turbine operates under steady flow conditions, receiving steam atthe following state: Pressure 1.2 MPa , temperature $188^{\circ} \mathrm{C}$, enthalpy$2785 \mathrm{~kJ} / \mathrm{kg}$, velocity $33.3 \mathrm{~m} / \mathrm{s}$ and elevation 3 m . The steam leaves theturbine at the following state: Pressure 20 kPa , enthalpy $2512 \mathrm{~kJ} / \mathrm{kg}$,velocity $100 \mathrm{~m} / \mathrm{s}$, and elevation 0 m . Heat is lost to the surroundings atthe rate of $0.29 \mathrm{~kJ} / \mathrm{s}$. If the rate of steam flow through the turbine is$0.42 \mathrm{~kg} / \mathrm{s}$, what is the power output of the turbine in kW?

UNIT-II

3. a) Write short notes on Second law of Thermodynamics.b) An inventor claims to develop an engine which absorbs 100 KW of heatfrom a reservoir at 1000 K produces 60 kW of work and rejects heat toa reservoir at 500 K . Will u advise investment in its development?7MOR
4. a) Derive Maxwell relations and deduce two "Tds" equations 10M
b) Define the following Terms i) Availability ii) Irreversibility 4M
UNIT-III
5. a) Draw and explain P-V diagram for pure substance. 7M
b) Steam enters in an engine at a pressure of 10 bar absolute and$250^{\circ} \mathrm{C}$. It is exhausted at 0.2 bar. The steam exhaust is 0.9 dry .Find i) drop in enthalpy, ii) Change in entropy7M
OR
6. a) Draw a neat sketch of throttling calorimeter and explain how dryness fraction of steam is determined.
b) Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when (i) its quality is 80% (ii) it is dry saturated (iii) Superheated the degree of superheat being $65^{\circ} \mathrm{C}$.

UNIT-IV

7. a) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 \mathrm{~m}^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods. (i) Isothermal process (ii) Adiabatic process (iii) Polytropic process.
b) A spherical shaped balloon of 10 m diameter contains hydrogen at $33^{\circ} \mathrm{C}$ and 1.3 bar. Find the mass of hydrogen in the balloon.

OR

8. a) Determine the pressure of nitrogen gas at $T=175 \mathrm{~K}$ and $\mathrm{v}=0.00375 \mathrm{~m}^{3} / \mathrm{kg}$ on the basis of (i) The ideal gas equation of state. (ii) The VanderWall's equation of state. The VanderWall's constant for nitrogen are $a=0.175 \mathrm{~m}^{6}-\mathrm{kPa} / \mathrm{kg} ; \mathrm{b}=0.00138 \mathrm{~m}^{3} / \mathrm{Kg}$.
b) Briefly discuss on the deviation of perfect gas model.

UNIT-V

9. a) Briefly discuss about the Volumetric Analysis.
b) A gas mixture consists of 0.4 kg of carbon monoxide and 1.1 kg of carbon dioxide Calculate the mass fraction, mole fraction, molar mass and gas constant.

OR

10. a) The following volumetric composition relate to a mixture of gases: $\mathrm{N}_{2}=81 \%, \mathrm{CO}_{2}=11 \%, \mathrm{O}_{2}=6 \%, \mathrm{CO}=2 \%$ Determine i) the gravimetric composition. ii) Molecular weight and iii) gas constant R for the mixture.
b) Establish the relation between mass fraction and mole fraction 4M

Code: 19A334T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Kinematic of Machinery

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Explain with sketches all inversions of quadric cycle chain.

OR

2. Sketch and explain Whitworth quick return motion mechanism.

UNIT-II

3. In a pin jointed four bar mechanism, as shown in Fig, $A B=300 \mathrm{~mm}, \mathrm{BC}=\mathrm{CD}=$ 360 mm , and $A D=600 \mathrm{~mm}$. The angle $B A D=60^{\circ}$. The crank $A B$ rotates uniformly at 100 r.p.m. Locate all the instantaneous centres and find the angular velocity of the link $B C$.

4. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine : 1 . Linear velocity and acceleration of the midpoint of the connecting rod, and 2 . angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.

UNIT-III

5. Sketch the Hart's straight line motion mechanism and prove that the tracing point ' P ' describes a straight line path.

OR

6. How can you how that a watt mechanism trace an approximate straight line?

UNIT-IV
7. Derive an expression for the minimum number of teeth required on the wheel in order to avoid interference in involute gear teeth.
14M 46

OR
8. A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio.

UNIT-V

9. A cam is to be designed for a knife edge follower with the following data :
10. Cam lift $=40 \mathrm{~mm}$ during 90° of cam rotation with simple harmonic motion.
11. Dwell for the next 30°.
12. During the next 60° of cam rotation, the follower returns to its original position with simple harmonic motion.
13. Dwell during the remaining 180°.

Draw the profile of the cam when the line of stroke of the follower passes through the axis of the cam shaft.The radius of the base circle of the cam is 40 mm .

OR

10. Discuss about various types of followers.
\square
Code: 19AC34T
II B.Tech. I Semester Supplementary Examinations July/August 2022 Life Sciences for Engineers
(Common to CE, ME \& CSE)
Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT - Marks co $\underset{\substack{\text { Blooms } \\ \text { Level }}}{* * * * * * * * *}$

UNIT-I

1. Describe meant by classification? Write the importance of Classification?
14M CO1

OR

2. a) Explain the five kingdom classification of living organisms? 7M CO1
b) Describe is Endoplasmic reticulum? Write their structure and important functions and draw the labelled diagram?
7M CO1
UNIT-II
3. a) Describe the structure of DNA \& RNA?
7M CO2
b) Explain Lock and Key Model and Induced fit model?
7 M CO 2

OR

4. Describe the Biomolecules and write functions and types of biomolecules? $14 \mathrm{M} \quad \mathrm{CO} 2$
UNIT-III
5. Describe about Bioenergetics and types of Bioenergetics?

OR

14 M CO 3
6. Discuss the mechanism of photosynthesis in plants?
14M CO3

UNIT-IV

7. a) Describe the sequential steps in the replication of DNA? 7M C04
b) Write the importance of Genetic code?
7M C04

OR

8. Describe the Gene Disorders in Humans?
14M C04

UNIT-V

9. Describe the Biosensors, types and applications?
14M CO5

OR

10. Explain the Transgenic species and process in animals?
14M CO5
\square
Code: 19A332T
II B.Tech. I Semester Supplementary Examinations July/August 2022

Metallurgy and Material Science

Max. Marks: 70
(Mechanical Engineering)
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. What are the methods used for measuring the grain size? Discuss any two of them.

OR

2. State and explain Hume Rothery's rules for the formation of Substitutional solid solution.

	UNIT-III	
5. a)	Give the classification of steels. Describe the ty high carbon steels.	8M
b)	Discuss about Hadfield manganese steels	6 M
	OR	
6.	Describe briefly the properties and applications	14M

UNIT-IV
7. Explain about stress relieving annealing and full annealing 14M
OR
8. a) Differentiate between Annealing and Normalizing 7M
b) Differentiate between carburizing and Nitriding 7M
UNIT-V
9. Explain any two methods of manufacture of composites14M
OR
10. Briefly explain metal matrix composites and Carbon-Carbon composites14M

Code: 19A331T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw the stress-strain diagram of mild steel specimen subjected to tensile test and explain the salient points.
b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100 KN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the modulus of elasticity and the Poisson's ratio of the material.

OR

2. a) Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses.
b) Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.
\square
3. a) What are the different types of beams?

UNIT-II

b) Draw the shear force and B.M diagram for a simply supported beam of length 8 m and carrying a uniformly distributed load of $12 \mathrm{KN} / \mathrm{m}$ for a distance of 4 m from the left end. Also calculate the maximum B.M on the section.

OR

4. A beam of 12 m long is supported at 2 m and 10 m from the left end. It carries uniformly distributed loads of $15 \mathrm{kN} / \mathrm{m}$ over both overhanging lengths along with a clockwise couple load of $220 \mathrm{kN}-\mathrm{m}$ at mid-span. Draw the shear force and bending moment diagrams for the beam. Find the position and magnitudes of maximum bending moment and the position of the point of contra flexure.

UNIT-III

5. Prove that for a rectangular section the maximum shear stress is 1.5 times the average stress. Sketch the variation of shear stress.

OR

6. A beam is simply supported and carries a U.D.L of $40 \mathrm{kN} / \mathrm{m}$ run over the whole span. The section of the beam is rectangular having depth as 500 mm . If the maximum stress in the material of the beam is $120 \mathrm{~N} / \mathrm{mm}^{2}$ and moment of inertia of the section is $7 \times 10^{8} \mathrm{~mm}^{4}$, find the span of the beam.

UNIT-IV

7. A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the slope at the ends of the beam is not to exceed 1^{0}, find the maximum deflection.

OR

8. A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a UDL of $9 \mathrm{kN} / \mathrm{m}$ over the entire span of 5 m . If the value of E for the beam material id $1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$., find (i) The slope at support ends and (ii) maximum deflection

[^0]9. State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.

OR

10. A spherical shell of 90 mm internal diameter has to with stand an internal pressure of $35 \mathrm{~N} / \mathrm{mm}^{2}$. Find the thickness of the shell required. The maximum permissible tensile stress is $80 \mathrm{~N} / \mathrm{mm}^{2}$.

Code: 19AC31T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Partial Differential Equations and Complex Variables

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the Laplace Transform of $e^{2 t}+4 t^{3}-2 \sin 3 t+3 \cos 3 t$

7M CO1
b) Find the L.T of $\left(t^{2}+1\right)^{2}$

7M CO1

OR

2. Find $L\left\{e^{-3 t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$

14M CO1

UNIT-II

3. Find inverse L.T of $\frac{5 s-2}{s^{2}(s+2)(s-1)}$

OR

4. Using convolution theorem, find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$

UNIT-III

14M CO2
5. Obtain the Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence Show that

OR

6. Find the half range sine series for $f(x)=x(\pi-x)$ in $0<x<\pi$ deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{32}$

UNIT-IV

7. Use separation of variables to solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$ in the form $u=f(x) g(y)$. Obtain the solution satisfying $u=0, \frac{\partial u}{\partial x}=1+e^{-3 y}$ when $x=0$ for all values of y .

OR

8. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)= \begin{cases}x & ; 0 \leq x \leq 50 \\ (100-x) & ; 50 \leq x \leq 100\end{cases}
$$

Find the temperature $u(x, t)$ at any time.

UNIT-V

9. Find the conjugate harmonic function of the harmonic function $u=x^{2}-y^{2}$

14M CO4

OR

10. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where $c:|z|=3$.

Code: 19A236T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Basic Electrical and Electronics Engineering

(Mechanical Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I
wer relationsh

1. a) State the voltage, current and power relationships for
i) Resistance ii) Inductance iii) capacitance
2. a) State Kirchhoff's Voltage and Current Laws with the help of an example.

7M CO1
b) Determine the equivalent resistance between A and B terminals in the following network.

Fig. 2
7M CO1
UNIT-II
3. With a Help of a Neat diagram explain the Construction of the Dc Motor.

OR

4. Explain Swinburne's test for the determination of efficiency of a dc machine

UNIT-III

5. Briefly Explain the Emf Method for the evaluation of Voltage regulation of Alternator by conducting suitable test.
6. a) With the help of a neat diagram Explain the procedure for evaluating the performance and efficiency of three phase induction motor
UNIT-IV
7. Briefly Explain the operation of Bridge Rectifier with necessary diagrams and derive the following terms
i) Dc Output voltage ii)
ii) Peak Inverse Voltage
ii) Ripple Factor
8. a) Discuss the working of NPN and PNP transistor with a neat sketch
b) Explain how a p-n junction diode acts as a rectifier and derive the current equation of a $p-n$ junction diode.

UNIT-V

9. Explain the procedure for evaluating the following parameters using CRO.
i) Time Period ii) Frequency
iii) Amplitude iv) Current
10. a) Draw the block diagram of general purpose CRO. Explain the functions of various blocks?
b) Explain the theory of induction heating. State its advantages and industrial applications

[^0]: UNIT-V

