	H	all Ticket Number :]					7
	Co	ode: 19A333T							<u></u>		<u></u>		R-19	
	II B.Tech. I Semester Supplementary Examinations July/August 2022													
								yna						
		1ax. Marks: 70	-				-	ginee	_	-			Time: 3 Hours	
	Aı	nswer any five full qu	Jestions k	by ch	oosiı	-	ne q		on fr	om e	each	unit (5x14 = 70 Marks)	
														Marks
1	a)	Classify the typ	as of th	orm	- Lood	-	NIT-		omo	s wi	th th	no ho	In of suitable	
	a)	example.	63 UI II	ICIII	louy	mai	THC 1	3931	CIII	5 991				7M
	b)	Identify the diff	erence	s be	etwe	en	ope	en s	vste	em a	and	clos	ed svstem in	
	- /	thermodynamic							,				j	7M
							OR							
2.		A turbine opera	ates un	der	ste	ady	flo	N CO	ondi	tion	s, r	eceiv	ring steam at	
		the following st							-					
		2785 kJ/kg, velo	•											
		turbine at the f velocity 100 m/s		•								•		
		the rate of 0.29											•	
		0.42 kg/s, what										-		14M
						UN	VIT-	-11						
3.	a)	Write short note	es on Se	ecor	nd la	aw c	of Th	nerm	nody	nar	nics	5.		7M
	b)	An inventor clai	ms to d	eve	lop	an e	engi	ne v	vhic	h al	osor	bs 1(00KW of heat	
		from a reservoir			•								•	
		a reservoir at 50)0 K. W	/ill u	adv			estm	nent	in i	ts de	evelo	pment?	7M
٨	-)						OR	4	" T -I	-" -	~	4:		4014
4.	a) b)	Derive Maxwell									•			10M
	b)	Define the follow	wing re	erms	1) P			-) III	eve	rsidi	шу		4M
5	a)	Draw and expla	in P-V/	neih	ram				ihet	anc	Δ			7M
0.	,	Steam enters i		-			-					har :	absolute and	7 101
	0)	250° C. It is exha		-			-							
		Find i) drop in e												7M
				,		•	OR							
6.	a)	Draw a neat sk	etch of	thro	ottlir	ng c	alo	rime	ter	and	exp	olain	how dryness	
		fraction of stear	n is det	erm	inec	1.								7M

b) Find the internal energy and enthalpy of unit mass of steam of a pressure of 7bar when (i) its quality is 80 % (ii) it is dry saturated (iii) Superheated the degree of superheat being 65 °C.

UNIT–IV

- 7. a) 1.5 kg of air at pressure 6 bar occupies a volume of 0.2 m^{3.} If this air is expanded to a volume of 1.1 m³. Find the work done and heat absorbed or rejected by the air for each of the following methods. (i) Isothermal process (ii) Adiabatic process (iii) Polytropic process.
 - b) A spherical shaped balloon of 10 m diameter contains hydrogen at 33°C and 1.3 bar. Find the mass of hydrogen in the balloon.

OR

- 8. a) Determine the pressure of nitrogen gas at T=175 K and v=0.00375m³/kg on the basis of (i) The ideal gas equation of state. (ii) The VanderWall's equation of state. The VanderWall's constant for nitrogen are a=0.175m⁶ -kPa/kg; b=0.00138m³ /Kg.
 - b) Briefly discuss on the deviation of perfect gas model.

UNIT-V

- 9. a) Briefly discuss about the Volumetric Analysis.
 - b) A gas mixture consists of 0.4kg of carbon monoxide and 1.1 kg of carbon dioxide Calculate the mass fraction, mole fraction, molar mass and gas constant.
 10M

OR

- 10. a) The following volumetric composition relate to a mixture of gases: N₂ = 81%, CO₂=11%, O₂= 6%, CO = 2% Determine i) the gravimetric composition. ii) Molecular weight and iii) gas constant R for the mixture.
 - b) Establish the relation between mass fraction and mole fraction 4M

7M

10M

4M

4M

4M

Hall Ticket Number :	R-1	9	
II B.Tech. I Semester Supplementary Examinations July/Augus	st 2022)	
Kinematic of Machinery			
(Mechanical Engineering)			
Ti Answer any five full questions by choosing one question from each unit (5x14	me: 3 = 70 M		
*******		,	
	Marks	CO	Blooms Level
UNIT-I	4 4 5 4	4	2
Explain with sketches all inversions of quadric cycle chain. OR	14M	1	2
Sketch and explain Whitworth quick return motion mechanism.	14M	1	4
UNIT–II			•
In a pin jointed four bar mechanism, as shown in Fig, $AB = 300$ mm, $BC = CD = 360$ mm, and $AD = 600$ mm. The angle $BAD = 60^{\circ}$. The crank AB rotates uniformly at 100 r.p.m. Locate all the instantaneous centres and find the angular velocity of the link BC.			
B 360 mm C			
✓ 600 mm →	14M	2	4
OR The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine : 1. Linear velocity and acceleration of the midpoint of the connecting rod, and 2. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.	14M	2	3
Sketch the Hart's straight line motion mechanism and prove that the tracing point 'P' describes a straight line path.	14M	3	4
OR	1 4 1 4	2	1
How can you how that a watt mechanism trace an approximate straight line?	14M	3	1
Derive an expression for the minimum number of teeth required on the wheel in order to avoid interference in involute gear teeth.	14M	4	6
A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio.	14M	4	3
 A cam is to be designed for a knife edge follower with the following data : 1. Cam lift = 40 mm during 90° of cam rotation with simple harmonic motion. 2. Dwell for the next 30°. 3. During the next 60° of cam rotation, the follower returns to its original position 			
with simple harmonic motion. 4. Dwell during the remaining 180°.			
Draw the profile of the cam when the line of stroke of the follower passes through the axis of the cam shaft. The radius of the base circle of the cam is 40 mm. OR	14M	5	6

~		R-1	9	
	∟ II B.Tech. I Semester Supplementary Examinations July/Augu	ust 202	2	J
	Life Sciences for Engineers		_	
	(Common to CE, ME & CSE)			
-	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1	Fime: 3		
-		4 – 70 ľ	viaiks j	
		Marks	СО	Bloo Lev
	UNIT–I			
•	Describe meant by classification? Write the importance of Classification?	14M	CO1	
	OR			
. a)	Explain the five kingdom classification of living organisms?	7M	CO1	
b)	Describe is Endoplasmic reticulum? Write their structure and important	714	CO1	
	functions and draw the labelled diagram?	7 111	COT	
	UNIT–II			
. a)	Describe the structure of DNA & RNA?	7M	CO2	
b)	Explain Lock and Key Model and Induced fit model?		CO2	
2)	OR		002	
	Describe the Biomolecules and write functions and types of biomolecules?	14M	CO2	
	UNIT–III			
	Describe about Bioenergetics and types of Bioenergetics?	14M	CO3	
	OR			
	Discuss the mechanism of photosynthesis in plants?	14M	CO3	
	UNIT–IV			
. a)	Describe the sequential steps in the replication of DNA?	7M	C04	
b)	Write the importance of Genetic code?	7M	C04	
	OR		001	
•	Describe the Gene Disorders in Humans?	14M	C04	
	UNIT-V Describe the Rissensers, types and applications?	1/1	CO5	
•	Describe the Biosensors, types and applications? OR	14111	005	
	Explain the Transgenic species and process in animals?	1/1	CO5	
•	***	14IVI	000	

Ha	Il Ticket Number :	
Co	de: 19A332T	
	II B.Tech. I Semester Supplementary Examinations July/August 2022	
	Metallurgy and Material Science	
Mo	(Mechanical Engineering) ax. Marks: 70 Time: 3 Hou	Jrs
An	swer any five full questions by choosing one question from each unit (5x14 = 70 Mark	(s)
		Mar
	UNIT–I	
۱.	What are the methods used for measuring the grain size? Discuss any two of them.	14
	OR	
2.	State and explain Hume Rothery's rules for the formation of Substitutional solid solution.	14
		1-
	UNIT–II	
3. a)	Briefly explain the methods used for construction of Equilibrium diagrams.	-
b)	Draw the phase diagram for an Isomorphous system.	-
	OR	
4. a)		-
b)	Define Liquidus line, Solidus line and Solvus line.	-
	UNIT–III	
5. a)		
,	high carbon steels.	ł
b)	Discuss about Hadfield manganese steels	(
	OR	
δ.	Describe briefly the properties and applications of copper and its alloys	14
	UNIT–IV	
7.	Explain about stress relieving annealing and full annealing	14
-	OR	1-
3. a)	Differentiate between Annealing and Normalizing	-
b)	Differentiate between carburizing and Nitriding	-
	UNIT–V	
9.	Explain any two methods of manufacture of composites	14
_	OR	
).	Briefly explain metal matrix composites and Carbon-Carbon composites	14

	Co	R-19	
		II B.Tech. I Semester Supplementary Examinations July/August 2022	
		Mechanics of Solids	
		(Mechanical Engineering)	
		lax. Marks: 70 Time: 3 Hours	
	A	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			Ma
	a)	UNIT–I Draw the stress-strain diagram of mild steel specimen subjected to tensile test and explain the	
•	a)	salient points.	-
	b)	An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN elongates	
	,	0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm. Calculate the	
		modulus of elasticity and the Poisson's ratio of the material.	
	-)	OR Draw Maka's single when the component is subjected to mutually normandicular togails	
•	a)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses.	-
	b)	Prove that the maximum stress induced in a body due to suddenly applied load is twice the	
	0)	stress induced when the same load is applied gradually.	-
•	a)	What are the different types of beams?	4
	b)	Draw the shear force and B.M diagram for a simply supported beam of length 8m and carrying	
		a uniformly distributed load of 12KN/m for a distance of 4m from the left end. Also calculate the	
		maximum B.M on the section.	10
		A beam of 12 m long is supported at 2 m and 10 m from the left end. It carries uniformly	
-		distributed loads of 15 kN/m over both overhanging lengths along with a clockwise couple load	
		of 220 kN-m at mid-span. Draw the shear force and bending moment diagrams for the beam.	
		Find the position and magnitudes of maximum bending moment and the position of the point of	
		contra flexure.	14
		UNIT–III Prove that for a rectangular section the maximum shear stress is 1.5times the average stress.	
		Sketch the variation of shear stress.	14
		OR	
•		A beam is simply supported and carries a U.D.L of 40kN/m run over the whole span. The	
		section of the beam is rectangular having depth as500mm. If the maximum stress in the material of the beam is $120N/mm^2$ and moment of inertia of the section is $7 \times 10^8 mm^4$, find the	
		span of the beam.	14
		UNIT–IV	
•		A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the	
		slope at the ends of the beam is not to exceed 1 ⁰ , find the maximum deflection.	14
		A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at	
		its ends. It carries a UDL of 9 kN/m over the entire span of 5 m. If the value of E for the beam	
		material id 1 x 10^4 N/mm ² ., find (i) The slope at support ends and (ii) maximum deflection	14
		UNIT–V	
		State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.	14
		OR A spherical shell of 90mm internal diameter has to with stand an internal pressure of 35N/mm ² .	
		Find the thickness of the shell required. The maximum permissible tensile stress is 80N/mm ² .	14

	Hall Ticket Number :	R-19)	
I	II B.Tech. I Semester Supplementary Examinations July/ Partial Differential Equations and Complex Va (Common to All Branches) Max. Marks: 70	riables Time: 3 H		
F	Answer any five full questions by choosing one question from each ur ********	Marks	arks) co	Bloor
	UNIT–I	Warks	00	Lev
1. a)	Find the Laplace Transform of $e^{2t} + 4t^3 - 2\sin 3t + 3\cos 3t$	7M	CO1	I
b)	Find the L.T of $(t^2 + 1)^2$ OR	7M	CO1	I
2.	Find $L\left\{e^{-3t}\int_{0}^{t}\frac{\sin t}{t}dt\right\}$			
		14M	CO1	
3.	Find inverse L.T of $\frac{5s-2}{s^2(s+2)(s-1)}$	14M	CO2	
	OR		002	
4.	Using convolution theorem , find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	14M	CO2	
5.	Obtain the Fourier series for $f(x) = x - x^2$ in the interval $[-f, f]$. Hence S	Show that		
	$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$	14M	CO3	
5.	OR Find the half range sine series for $f(x) = x(f - x)$ in $0 < x < f$ dec	luce that		
	$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{f^2}{32}$			
	UNIT–IV		CO3	
7.	Use separation of variables to solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y}$	f(x)g(y).		
	Obtain the solution satisfying $u = 0$, $\frac{\partial u}{\partial x} = 1 + e^{-3y}$ when $x = 0$ for all value	es of y.	CO4	
3.	OR A homogeneous rod of conducting material of length 100 cm has its enc zero temperature and the temperature initially is	ls kept at		
	$u(x,0) = \begin{cases} x & ;0 \le x \le 50\\ (100-x) & ;50 \le x \le 100 \end{cases}$			
	Find the temperature $u(x,t)$ at any time.	14M	CO4	
9.	UNIT-V Find the conjugate harmonic function of the harmonic function $u = x^2 - y^2$	² 14M	CO5	
).	OR Evaluate $\int \frac{e^{2z}}{(z-1)(z-2)} dz$ where $c: z = 3$.			
	$\int_{c} (z-1)(z-2)^{dx} \qquad \text{where } c : x = 5.$	14M	CO5	
		Pag	e 1 of 1	

		Hall Ticket Number :			
		Code: 19A236T	R-1	9	
		Il B.Tech. I Semester Supplementary Examinations July/Augu	ust 202	2	1
		Basic Electrical and Electronics Engineering		_	
		(Mechanical Engineering)			
			Time: 3		
		Answer any five full questions by choosing one question from each unit (5x1	4 = 707	viarks j	
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	State the voltage, current and power relationships for			
	L)	i) Resistance ii) Inductance iii) capacitance	7M	CO1	L2
	b)	State the limitations Ohms law and discuss its limitations of it. OR	7M	CO1	L2
2.	a)	State Kirchhoff's Voltage and Current Laws with the help of an example.	7M	CO1	L2
	b)	Determine the equivalent resistance between A and B terminals in the following			
		network.			
		€			
		$\mathbf{x}^{4\mathbf{n}}$ $\mathbf{x}^{2\mathbf{n}}$			
		$\begin{cases} \ast_{\Omega} \qquad \qquad$			
		B			L3
		Fig.2	7M	CO1	
3.		UNIT–II With a Help of a Neat diagram explain the Construction of the Dc Motor.	14M	<u> </u>	
0.		OR	14111	CO2	L2
4.		Explain Swinburne's test for the determination of efficiency of a dc machine	14M	CO2	L2
		UNIT–III			
5.		Briefly Explain the Emf Method for the evaluation of Voltage regulation of Alternator by conducting suitable test.	14M	CO3	L2
		OR	14101	003	L2
6.	a)	With the help of a neat diagram Explain the procedure for evaluating the			
	b)	performance and efficiency of three phase induction motor What are the applications of three phase induction motor	10M	CO3	L2
	D)	UNIT-IV	4M	CO3	L1
7.		Briefly Explain the operation of Bridge Rectifier with necessary diagrams and			
		derive the following terms			
		i) Dc Output voltage ii) Peak Inverse Voltage iii) Ripple Factor OR	14M	CO4	L2
8.	a)	Discuss the working of NPN and PNP transistor with a neat sketch	7M	CO4	L2
	b)	Explain how a p-n junction diode acts as a rectifier and derive the current			
		equation of a p-n junction diode.	7M	CO4	L2
0		UNIT-V Explain the procedure for evaluating the following parameters using CPO			
9.		Explain the procedure for evaluating the following parameters using CRO. i) Time Period ii) Frequency iii) Amplitude iv) Current	14M	CO5	L2
		OR			
10.	a)	Draw the block diagram of general purpose CRO. Explain the functions of various blocks?	7M	CO5	
	b)	Explain the theory of induction heating. State its advantages and industrial applications	7M	CO5 CO5	L2 L2
	~)		7 1 1 1	005	LZ