Code: 19A334T
II B.Tech. I Semester Supplementary Examinations November 2023

Kinematics of Machinery

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL
UNIT-I

1. Discuss various types of constrained motion

14 M 12

OR

2. Explain the term kinematic link. Give the classification of kinematic link and joints in chain.

UNIT-II

3. In a slider crank mechanism, the length of crank $O B$ and connecting rod $A B$ are 125 mm and 500 mm respectively. The centre of gravity G of the connecting rod is 275 mm from the slider A. The crank speed is 600 r.p.m. clockwise. When the crank has turned 45° from the inner dead centre position, determine: 1. velocity of the slider $\mathrm{A}, 2$. velocity of the point G , and 3 . angular velocity of the connecting rod $A B$.

OR

4. The engine mechanism shown in Fig. has crank $O B=50 \mathrm{~mm}$ and length of connecting rod $A B=225 \mathrm{~mm}$. The centre of gravity of the rod is at G which is 75 mm from B. The engine speed is 200 r.p.m. For the position shown, in which $O B$ is turned 45° from OA, Find 1 . the velocity of G and the angular velocity of $A B$, and 2. the acceleration of G and angular acceleration of $A B$.

UNIT-III

5. Determine the greatest permissible angle between the axes of the two shafts which are connected by a Hooke's joint if the maximum variation in the speed of the driven shaft is 8% of the mean speed. The driving shaft is rotating at a uniform speed of 500 r.p.m. Also find the maximum and the minimum speeds of the driven shaft.

OR

6. Derive an expression for the velocity of the driven shaft in a Hook's coupling

UNIT-IV

7. In an epicyclic gear train, an arm carries two gears A and B having 36 and 45 teeth respectively. If the arm rotates at 150 r.p.m. in the anticlockwise direction about the centre of the gear A which is fixed, determine the speed of gear B. If the gear A instead of being fixed, makes 300 r.p.m. in the clockwise direction, what will be the speed of gear B ?

OR
8. State and prove the law of gearing

> UNIT-V
9. How are the cams classified? Describe in detail.

OR

10. What is a displacement diagram? Draw and illustrate the displacement diagram when the follower moves with Simple Harmonic Motion and Uniform acceleration retardation.

Hall Ticket Number :									

Code: 19AC34T

II B.Tech. I Semester Supplementary Examinations November 2023

Life Sciences for Engineers

(Common to CE, ME \& CSE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Describe meant by classification? Write the importance of Classification?

14M CO1
2

OR

2. a) Explain the five kingdom classification of living organisms? $7 \mathrm{M} \quad \mathrm{CO} 1 \quad 2$
$\begin{array}{lll}\text { b) Describe is Endoplasmic reticulum? Write their structure and important } \\ \text { functions and draw the labelled diagram? } & 7 \mathrm{M} \text { CO1 } 2\end{array}$

UNIT-II

3. Describe the mechanism of enzyme action?

OR

4. Define the antibodies and Write the types and functions of antibodies?

14M CO2

UNIT-III

5. Explain the Glycolysis pathway and importance?

14M CO3 2

OR

6. Discuss the mechanism of photosynthesis in plants?
$14 \mathrm{M} \quad \mathrm{CO} 34$

UNIT-IV

7. Define the genetics? Explain the Mendel's Laws?

14 M CO4 1

OR

8. Describe the meiosis cell division process? 14 M CO4 2

UNIT-V
9. a) Write short notes on restriction enzymes?

7M CO5 1
b) Explain the Microbes in Human Welfare? $7 \mathrm{M} \quad \mathrm{CO} \quad 2$

OR
10. Explain the various process of recombinant DNA technology?

14M CO5 2

Hall Ticket Number:										

R-19

Code: 19A332T
|| B.Tech. I Semester Supplementary Examinations November 2023

Metallurgy and Material Science

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks

1. Define Solid Solution. Classify and explain types of solid solutions with neat sketches

OR

2. State and explain Hume Rothery's rules for the formation of Substitutional solid solution.

UNIT-II

3. a) Classify Equilibrium diagrams
b) Define Liquidus line, Solidus line and Solvus line.

OR

4. Explain the phase diagram for "Two components completely soluble in Liquid state and completely soluble in solid state"

UNIT-III

5. a) Explain the microstructure, properties and applications of Grey cast iron 7M
b) Discuss about malleable cast iron mentioning its properties and applications 7M

OR
6. a) Discuss about Hadfield manganese steels 7M
b) What do you understand by Season cracking and how it can be prevented 7M

UNIT-IV
7. Elaborate the diffusion and mechanical coating process 14M

OR
8. a) What is Surface treatment? Mention its characteristics 7M
b) Briefly explain Sheradising process. 7M

UNIT-V
9. Explain any two methods of manufacture of composites 14 M

OR
10. Describe the basic steps in powder metallurgy process 14M

Mechanics of Solids

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain various types of stresses and strains.
b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100 KN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the modulus of elasticity and the poisson's ratio of the material.
2. a) Derive the relationship between young's modulus, modulus of rigidity and bulk modulus.
b) Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses.

UNIT-II

3. a) What are the different types of beams?
b) A cantilever of length 2 m carries a of $1 \mathrm{kN} / \mathrm{m}$ run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the cantilever.

OR

4. a) Define point of contra flexure.
b) Draw the shear force and B.M diagram for a simply supported beam of length 8 m and carrying a uniformly distributed load of $12 \mathrm{KN} / \mathrm{m}$ for a distance of 4 m from the left end. Also calculate the maximum B.M on the section.

UNIT-III

5. a) Prove that for a rectangular section the maximum shear stress is 1.5 times the average stress. Sketch the variation of shear stress.
b) Derive the section modules for (a) rectangular section and (b) circular section 6M

OR
6. a) Derive the section modules for a hollow rectangular section
b) A timber beam 120 m wide and 185 mm deep supports a u.d.I of intensity $\mathrm{w} \mathrm{KN} / \mathrm{m}$ length over a span of 2.7 m . If the safe stresses are 29 Mpa in bending and 3 Mpa in shear, calculate the safe intensity of the load which can be supported by the beam.

UNIT-IV

7. a) Derive an expression for slope and deflection at free end of a cantilever beam subjected to UDL over entire span.
b) Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load

OR

8. A rectangular reinforced concrete simply supported beam of length 2 m and cross section $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ is carrying an uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ through its span. Find the maximum slope and deflection. Take $\mathrm{E}=2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT-V

9. State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.

OR

10. Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.

Hall Ticket Number :
Code: 19AC41T

R-19

II B.Tech. II Semester Supplementary Examinations November 2023
Numerical Methods \& Probability and Statistics
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find a real root of the equation $x \log _{10}^{x}=1.2$ by regula -falsi method correct to 4 decimal places

OR

2. From the following table:

x^{o}	10	20	30	40	50	60	70	80
$\cos x$	0.9848	0.9397	0.8660	0.7660	0.6428	0.5000	0.3420	0.1737

Estimate the values of $\cos 25^{\circ}$ and $\cos 73^{\circ}$ using Newton's formulae.

UNIT-II

3. Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by using
(i) Trapezoidal rule
(ii) Simpson's $1 / 3$ rule and
(iii) Simpson's 3/8 rule.

OR

4. Given that $\frac{d y}{d x}=x+y, y(1)=0$. Find an approximate value of $\mathrm{y}(0.3)$ taking $\mathrm{h}=0.1$ by using modified Euler's method.

14 M CO 2 L 3

UNIT-III

5. If Probability density of a random variable is given by
$f(x)=\left\{\begin{array}{l}k\left(1-x^{2}\right), \text { for } 0<x<1 \\ 0, \text { otherwise }\end{array}\right.$
then find (i) k (ii) $P(0.1<X<0.2)$ (iii) $P(x>0.5)$

OR

6. If the variance of a Poisson variate is 3 , then find the probability that
(i) $\mathrm{x}=0$
(ii) $0<x \leq 3$
(iii) $x>3$
(iv) $1 \leq x<4$.
14 M CO3 L3

UNIT-IV

7. Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favour of the proposal. Test the hypothesis that proportions of men and women in favour of the proposal are same at 5% level.

OR

8. The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D. 2.5 inches?

14 M CO3 L1

14M CO4

14M CO2 L3
14 M CO3
14M CO1
L3

14M CO1
L2

14M CO2 L2
-

UNIT-V

9. Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results.

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	----

Test whether the two horses have the same running capacity.
14M CO5 L4

OR

10. 1000 students at college level were graded according to their I.Q. and the economic conditions of their home. Use chi-square test to find out whether there is any association between condition at home and I.Q ($\alpha=0.05$).

Economic Condition	High	Low	Total
Rich	460	140	600
Poor	240	160	400
Total	700	300	1000

Code: 19AC31T

II B.Tech. I Semester Supplementary Examinations November 2023

Partial Differential Equations and Complex Variables

(Common to CE, EEE, ME \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL

UNIT-I

1. a) Evaluate $L\{t \sin 3 t\}$
b) Find the L.T of $L\left\{t e^{-2 t} \cos t\right\}$

7M CO1 L1
OR
2. a) Find $L\left\{\int_{0}^{t} \int_{0}^{t} \cosh a t d t d t\right\}$
b) Using L.T, Evaluate $\int_{0}^{\infty} t e^{-t} \sin t d t$

7M CO1 L3

UNIT-II

3. a) Find the inverse L.T of $\log \left(\frac{s^{2}+4}{s^{2}+9}\right)$

7 M CO2 L1
b) Find $L^{-1}\left\{\log \left(\frac{s+a}{s+b}\right)\right\}$

7 M CO2 L1
OR
4. Using L.T, solve $\left(D^{2}+4 D+5\right) y=5$, given that

$$
Y(0)=0, Y^{\prime}(0)=0
$$

14M CO2 L3

UNIT-III

5. Expand $f(x)=x^{2}, 0<x<2 \pi$ as a Fourier series. 14 M CO3 L2

OR

6. Find the Fourier Series of periodicity 3 for

$$
f(x)=2 x-x^{2} \text { in } 0<x<3
$$

UNIT-IV

7. Use separation of variables to solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$, given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t}=0$ when $x=0$. OR
8. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, Find the displacement y at any time and at any distance from the end $x=0$.

UNIT-V

9. Prove that z^{n} (n is a positive integer) is analytic and hence find its derivative.

OR

10. a) Evaluate $\int_{c} \frac{\log z}{(z-1)^{3}} d z$ where $c:|z-1|=\frac{1}{2}$. Using Cauchy's integral formula.

7M CO5 L5
b) Evaluate $\int_{c} \frac{d z}{z^{3}(z+4)}$ where C is $|z|=2$ using

Cauchy's integral formula.

Basic Electrical and Electronics Engineering

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Derive the expression for an equivalent resistance if any two resistors R1, R2 are connected in parallel
b) Calculate the equivalent Resistance between terminals a and b for the below circuit

Fig. 3
OR
2. a) Explain about the following elements
i) Resistance ii) Inductance iii) Capacitance

7M CO1
b) For the circuit below, calculate the current drawn from the battery and the current in the 6 ohms resistor.

Fig. 4
7M CO1

UNIT-II

3. a) Discuss the procedure for evaluating the efficiency of the Dc motor by applying brake test

10M CO2 L3
b) Find the torque in N -m exerted by a 4-pole series motor whose armature has 1200 conductors connected up in a 2 -circuit winding. The motor current is 10 A and the flux per pole is 0.02 Wb .

4M CO2 L2

OR

4. List out the various types of D.C machine and explain construction and working principle on which a generator works.

UNIT-III

5. a) Derive the EMF equation of a single-phase transformer and explain the voltage transformation ratio
b) Establish the relationship between number of poles, frequency and synchronous speed for a 3- phase alternator.
$4 \mathrm{M} \mathrm{CO3}$

OR

6. Draw the Equivalent Circuit of Single-phase transformer of rating 5 kVA , $200 \mathrm{~V} / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, the data available from the test is as follows.
O.C test from LV side: 200V 1.25A 150W
S.C test from HV side: 20V 12.5A 175W
14M CO3
L6

UNIT-IV

7. a) Explain the concept of Rectifier and its application.
4M CO4 L2
b) An Ac supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10: 1 .
Calculate (i) the output d.c. voltage (ii) the peak inverse voltage. iii) ripple factor and iv) Transformer utilization factor Assume the diode to be ideal.

Fig. 1

OR

8. Briefly Explain the operation of Bridge Rectifier with necessary diagrams and derive the following terms
i) Dc Output voltage ii) Peak Inverse Voltage iii) Ripple Factor
14M CO4
10M CO4 L3 UNIT-V
9. a) List out the various applications of CRO in Laboratories.
$4 \mathrm{M} \quad \mathrm{C} 05 \quad \mathrm{~L} 1$
b) Draw a basic block diagram of a CRO and explain the features of CRO in details.
10M C05 L2

OR

10. a) Explain the theory of dielectric heating. State its advantages and industrial applications
7M C05 L2
b) List out some of the applications of induction heating
7M C05 L1

Basic Thermodynamics

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is meant by displacement work? Explain the same with reference to the Quasi-static process.
b) Classify the types of thermodynamic systems with the help of suitable example. \quad OR
2. a) Prove that Internal energy is a property of the system. 6M
b) A mass of gas is compressed in a quasi-static process from $80 \mathrm{KPa}, 0.1 \mathrm{~m}^{3}$ to 0.4 MPa , $0.03 \mathrm{~m}^{3}$. Assuming that pressure and volume are related by $\mathrm{PV}^{\mathrm{n}}=$ constant. Find the work interaction during the process. Identify whether it a work producing system or work absorbing system.

UNIT-II

3. a) Write short notes on Second law of Thermodynamics.
b) Bring out the concept of entropy and importance of T-s diagram.

OR

4. a) Calculate the entropy change of the universe as a result of the following processes:
i) A copper block of 750 g mass and with Cp of $150 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $9^{\circ} \mathrm{C}$.
ii) The same block at $9^{\circ} \mathrm{C}$ is dropped from a height of 100 m into the lake.
iii) Two such blocks at 100 and $0^{\circ} \mathrm{C}$ are joined together.

UNIT-III

5. a) Explain the concept of Triple point.
b) Draw and explain P-T diagram for pure substance

OR
6. a) Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when (i) its quality is 80% (ii) it is dry saturated (iii) Superheated the degree of superheat being $65{ }^{\circ} \mathrm{C}$.

UNIT-IV

7. a) Explain Throttling process and Free expansion process.
b) A spherical shaped balloon of 10 m diameter contains hydrogen at $33^{\circ} \mathrm{C}$ and 1.3 bar. Find the mass of hydrogen in the balloon.

OR

8. a) A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $5^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.
b) Write a short note on compressibility factor. 4 M

UNIT-V

9. a) Write a short note on the Gravimetric Analysis.
b) Explain Mass fraction .Mole fraction, Internal energy and specific heat of gas mixtures

OR

10. a) A Vessel of $5 \mathrm{~m}^{3}$ capacity contains two gases A and B in proportion of 40% and 60% respectively at $25^{\circ} \mathrm{C}$.lf the value of R for the gases is $0.288 \mathrm{kj} / \mathrm{kgK}$ and $0.295 \mathrm{kj} / \mathrm{kgK}$ and if the total weight of the mixture is 2 kg calculate (i) partial pressure (ii) total pressure (iii) the mean value of gas constant for the mixture.
