	all Ticket Number : R-	19		
.0	Il B.Tech. I Semester Supplementary Examinations November 20)23		
	Kinematics of Machinery			
	(Mechanical Engineering)			
		: 3 Ho		
F	Answer any five full questions by choosing one question from each unit (5x14 = 7 *********	'U Mari	KS)	
		Marks	со	
•	Discuss various types of constrained motion	14M	1	
	OR Explain the term kinematic link. Give the classification of kinematic link and joints			
	in chain.	14M	1	
	UNIT–II			
5.	In a slider crank mechanism, the length of crank OB and connecting rod AB are			
	125 mm and 500 mm respectively. The centre of gravity G of the connecting rod is			
	275 mm from the slider A. The crank speed is 600 r.p.m. clockwise. When the crank has turned 45° from the inner dead centre position, determine: 1. velocity of			
	the slider A, 2. velocity of the point G, and 3. angular velocity of the connecting rod			
	AB.	14M	2	
	OR			
1 .	The engine mechanism shown in Fig. has crank OB = 50 mm and length of			
	connecting rod AB= 225 mm. The centre of gravity of the rod is at G which is 75			
	mm from B. The engine speed is 200r.p.m. For the position shown, in which OB is turned 45° from OA, Find 1. the velocity of G and the angular velocity of AB, and 2.			
	the acceleration of G and angular acceleration of AB.			
	В			
	G			
	45°			
	A O	14M	2	
	UNIT–III			
5.	Determine the greatest permissible angle between the axes of the two shafts			
	which are connected by a Hooke's joint if the maximum variation in the speed of the driven shaft is 8% of the mean speed. The driving shaft is rotating at a uniform			
	speed of 500 r.p.m. Also find the maximum and the minimum speeds of the driven			
	shaft.	14M	3	
	OR			
б.	Derive an expression for the velocity of the driven shaft in a Hook's coupling	14M	3	
	UNIT–IV			
7.	In an epicyclic gear train, an arm carries two gears A and B having 36 and 45			
	teeth respectively. If the arm rotates at 150 r.p.m. in the anticlockwise direction about the centre of the gear A which is fixed, determine the speed of gear B. If the			
	gear A instead of being fixed, makes 300 r.p.m. in the clockwise direction, what			
	will be the speed of gear B?			
	A			
	-Arm C			
		14M	4	
	OR			
3.	State and prove the law of gearing	14M	4	
	UNIT–V			
).	How are the cams classified? Describe in detail.	14M	5	
	OR			
).	What is a displacement diagram? Draw and illustrate the displacement diagram			
	when the follower moves with Simple Harmonic Motion and Uniform acceleration retardation.	14M	5	
		1411	5	

Page **1** of **1**

Ha	all Ticket Number :	N 44]	
Со	de: 19AC34T	R-19		
	II B.Tech. I Semester Supplementary Examinations November : Life Sciences for Engineers (Common to CE, ME & CSE)	2023		
	ax. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = *********	ie: 3 H = 70 Ma		
	UNIT–I	Marks	СО	
	Describe meant by classification? Write the importance of Classification?	14M	CO1	
. a)	Explain the five kingdom classification of living organisms?	7M	CO1	
b)	Describe is Endoplasmic reticulum? Write their structure and important functions and draw the labelled diagram?	7M	CO1	
-	UNIT-II Describe the mechanism of enzyme action?	14M	CO2	
	OR Define the antibodies and Write the types and functions of antibodies?	14M	CO2	
	UNIT–III Explain the Glycolysis pathway and importance?	14M	CO3	
•	OR	14101	003	
j.	Discuss the mechanism of photosynthesis in plants?	14M	CO3	
	UNIT–IV			
-	Define the genetics? Explain the Mendel's Laws? OR	14M	CO4	
-	Describe the meiosis cell division process?	14M	CO4	
	UNIT-V	714	005	
). a) b)	Write short notes on restriction enzymes? Explain the Microbes in Human Welfare?	7M 7M	CO5 CO5	
5)	OR	7 111	000	
).	Explain the various process of recombinant DNA technology?	14M	CO5	

		На	II Ticket Number :												F		
	L	Cor	de: 19A332T		<u> </u>											R	-19
			ll B.Tech. I Sen		etal	lurg	yy a	nd	ary [Mat Eng	eria	l Sc	ien		ove	emk		
tice.			ax. Marks: 70 swer any five full qu	estic	ons b	y ch	oosir	-	ne qı *****	Jesti	on fro	om e	each	n unit	t (5×		3 Hours 0 Marks)
nalprac								UN	IT–I								Marks
evaluator and/or equations written eg. 32+8=40, will be treated as malpractice	1.		Define Solid Solut sketches	on.	Clas	sify a	and e		in ty DR	pes	of sc	olid s	oluti	ons	with	n neat	14M
e tre	0		State and evoluin I	Jum		thorn	'o rul			form	ootio	o of	Cub		iono		
t0, will b	2.		State and explain I solution.	TUTT		unery	STU		Ji the		latio		Sub	siiuu	IUIIa	ii soliu	14M
F8≡⁄								UN	T–II								
37	3.	a)	Classify Equilibriun	n dia	aram	าร											7M
eg.	0.	b)	Define Liquidus line		-		and	Solv	ue lir								7M
itten		0)		, UC	muus		anu		DR	10.							7 111
ations wr	4.		Explain the phase state and complete	-				com	pone	nts c	comp	letel	y sol	luble	in	Liquid	14M
or equa				-													
and/	Б	2)	Explain the micros	ructi	uro r	ron			T–III	icatio		fGr		oct in	on		7M
tor	5.	a) ⊾)	Explain the microst		-								•				
evalua		b)	Discuss about mall	eabi	e cas	st iro	n me		ning r DR	ts pro	open	ies a	ina a	ipplic		ons	7M
al to	6.	a)	Discuss about Had	field	man	gane	ese s	teels	i								7M
2. Any revealing of identification, appeal to		b)	What do you under	stan	d by	Sea	son d	crack	ing a	nd h	ow it	can	be p	reve	ente	d	7M
atior								UNI	T–IV								
tifica	7.		Elaborate the diffus	sion	and r	necł	nanic	al co	ating	proc	cess						14M
den								C)R								
j of i	8.	a)	What is Surface tre	atm	ent?	Men	tion i	ts ch	aract	terist	ics						7M
aling		b)	Briefly explain She	radis	sina r	oroce	ess.										7M
eve		-,			51												
ny r								UNIT	_V	1							
7. 7	9.		Explain any two me	ethor	ds of	man				_ mpos	sites						14M
	υ.)R								
	10.		Describe the basic	step	s in	powo	der m			proc	ess						14M
								*	**								

	На	Il Ticket Number :	_
L	Cod	de: 19A331T	
	000	II B.Tech. I Semester Supplementary Examinations November 2023	
		Mechanics of Solids (Mechanical Engineering)	
	-	Time: 3 Hour swer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********	
		UNIT-I	Mark
1.	a)	Explain various types of stresses and strains.	71
	b)	An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN	
		elongates 0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm.	
		Calculate the modulus of elasticity and the poisson's ratio of the material. OR	71
5 2.	a)	Derive the relationship between young's modulus, modulus of rigidity and bulk modulus.	71
	b)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile	
2		stresses.	71
	2)	UNIT-II	- 1
3.	a) b)	What are the different types of beams? A cantilever of length 2 m carries a of 1 kN/m run over a length of 1.5 m from the free	51
1. 2. 3.	5)	end. Draw the shear force and bending moment diagrams for the cantilever.	9
4.	a)	OR Define point of contra flexure.	3
	b)	Draw the shear force and B.M diagram for a simply supported beam of length 8m and	
		carrying a uniformly distributed load of 12KN/m for a distance of 4m from the left end. Also calculate the maximum B.M on the section.	4.4
5		UNIT-III	11
5.	a)	Prove that for a rectangular section the maximum shear stress is 1.5times the average	
5		stress. Sketch the variation of shear stress.	8
6.	b)	Derive the section modules for (a) rectangular section and (b) circular section OR	6
6.	a)	Derive the section modules for a hollow rectangular section	4
	b)	A timber beam 120m wide and 185mm deep supports a u.d.l of intensity w KN/m length	
		over a span of 2.7m. If the safe stresses are 29Mpa in bending and 3Mpa in shear, calculate the safe intensity of the load which can be supported by the beam.	10
ת ביינו			10
7.	a)	Derive an expression for slope and deflection at free end of a cantilever beam subjected	
		to UDL over entire span.	7
	b)	Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load	7
		OR	
8.		A rectangular reinforced concrete simply supported beam of length 2 m and cross section	
		100 mm x 200 mm is carrying an uniformly distributed load of 10 kN/m through its span. Find the maximum slope and deflection. Take $E=2 \times 10^4 \text{ N/mm}^2$.	14
		UNIT-V	14
9.		State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.	14
		OR	
10.		Determine the maximum and minimum hoop stress across the section of a pipe of 400mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of 8N/mm ² .	
		Also sketch the radial pressure distribution and hoop stress distribution across the section.	14

ŀ	Hall Ticket Number :	R-19		
С	ode: 19AC41T			
	II B.Tech. II Semester Supplementary Examinations November 2	023		
	Numerical Methods & Probability and Statistics (Common to CE & ME)			
١	· · · · · · · · · · · · · · · · · · ·	e: 3 Hc	ours	
A	Answer any five full questions by choosing one question from each unit $(5x14 = 3)$	70 Mai	rks)	
		Marks	со	
4				
1.	Find a real root of the equation $x \log_{10}^{x} = 1.2$ by regula -falsi method correct to	14M	CO1	
	4 decimal places OR	1 1101	001	
2.	From the following table:			
	x ^o 10 20 30 40 50 60 70 80			
	cos x 0.9848 0.9397 0.8660 0.7660 0.6428 0.5000 0.3420 0.1737			
	Estimate the values of $\cos 25^\circ$ and $\cos 73^\circ$ using Newton's formulae.	14M	CO1	
	UNIT–II			
3.	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by using			
σ.	$\int_{0}^{1} 1 + x = 0$			
	(i) Trapezoidal rule (ii) Simpson's 1/3 rule and (iii) Simpson's 3/8 rule.	14M	CO2	
	OR			
4.	Given that $\frac{dy}{dx} = x + y$, $y(1) = 0$. Find an approximate value of $y(0.3)$ taking h=0.1			
	by using modified Euler's method.	14M	CO2	
	UNIT–III			
5.	If Probability density of a random variable is given by			
	$f(x) = \begin{cases} k(1-x^2), \text{ for } 0 < x < 1\\ 0, \text{ otherwise} \end{cases}$			
	0, otherwise			
	then find (i) k (ii) P(0.1 <x<0.2) (iii)="" p(x="">0.5)</x<0.2)>	14M	CO3	
	OR			
6.	If the variance of a Poisson variate is 3, then find the probability that (i) $x=0$ (ii) $0 < x = 3$ (iii) $x > 3$ (iv) $1 < x < 4$.	1 4 1 4	CO3	
	(i) x=0 (ii) 0 <x (iii)="" 3="" x="">3 (iv) 1 x<4.</x>	14111	003	
7.	Random samples of 400 men and 600 women were asked whether they would			
	like to have a flyover near their residence. 200 men and 325 women were in			
	favour of the proposal. Test the hypothesis that proportions of men and women in favour of the proposal are same at 5% level.	14M	CO4	
	OR	1 - 1 1 1	004	
8.	The means of two large samples of sizes 1000 and 2000 members are 67.5			
	inches and 68.0 inches respectively. Can the samples be regarded as drawn		• • •	
	from the same population of S.D. 2.5 inches?	14M	CO4	

UNIT–V

9. Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results.

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether the two horses have the same running capacity.

OR

10. 1000 students at college level were graded according to their I.Q. and the economic conditions of their home. Use chi-square test to find out whether there is any association between condition at home and I.Q (= 0.05).

Economic Condition	High	Low	Total
Rich	460	140	600
Poor	240	160	400
Total	700	300	1000
	·	***	

14M CO5 L4

14M CO5 L4

	Hal	I Ticket Number :													
		le: 19AC31T										F	R-19	7	
		II B.Tech. I Semest Partial Differ	ential I	Equo	atio	ns a	nd	Cor	nple)23		
		ax. Marks: 70 swer any five full questic	(Comm ons by ch		ng or					each	unit (ť			Hours arks)	
		_ (-)		UNI	Г—I						Ma	arks	СО	BL
1.		Evaluate $L\{t \ ext{si}$,		``							7	7M	CO1	L2
	b)	Find the L.T of L	${t e^{-2t}}$	co	st} OF	2						7	7M	CO1	L1
2 2 2 2 2	2)	Find $L \begin{cases} \int_{0}^{t} \int_{0}^{t} \cos l dt \\ \int_{0}^{t} \int_{0}^{t} \cos l dt \end{cases}$. J.		•									
ς ζ .	a)	Find $L \left\{ \int_{0} \int_{0}^{1} COS \right\}$		aı	Ĵ							7	7M	CO1	L1
	b)	Using L.T, Evalua	ate $\int_{0}^{\infty} te$	e^{-t} S	sin <i>t</i>	t dt						-	78/	CO1	13
5			0	l	JNIT	[111	COT	L3
3.	a)	Find the inverse L	T of lo									7	7M	CO2	L1
	b)	Find $L^{-1} \left\{ \log \left(\frac{1}{2} \right) \right\}$	$\left(\frac{s+a}{s+b}\right)$	<pre>}</pre>	OF	•						7	7M	CO2	L1
² 4.		Using L.T, solv	$\sim (D^2)$	² ⊥			5),	,	5	aiva	on th	at			
4.			`		^{+}D	· · •	, , ,	/	Ј,	give		ιαι			
		Y(0) = 0, Y'(0)	0)=0		JNIT	-111						14	1M	CO2	L3
5.		Expand $f(x) =$	x^2 , (<i>x</i> <	2f	as	a F	our	ier s	eries	^{5.} 14	1M	CO3	L2
6.		Find the Fourier S	eries o	f pe	OF riodi		3 fc	or							
		f(x) = 2x - x		-		-						14	1M	CO3	L1

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice.

Page **1** of **2**

UNIT-IV

Use separation of variables to solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$, 7.

given that
$$u = 0$$
 when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ when $x = 0$.
14M CO4 L3

OR

A tightly stretched string with fixed end points 8. x = 0 and x = l is initially in a position given by $y(x,0) = y_0 \sin^3\left(\frac{fx}{l}\right)$. If it is released from rest from this position, Find the displacement y at any time

and at any distance from the end x = 0. 14M CO4 L3

UNIT-V

OR

9. Prove that z^n (n is a positive integer) is analytic and hence find its derivative. 14M CO5 L5

10. a) Evaluate
$$\int_{c} \frac{\log z}{(z-1)^3} dz$$
 where $c: |z-1| = \frac{1}{2}$. Using

Cauchy's integral formula.

b) Evaluate $\int \frac{dz}{z^3(z+4)}$ where C is |z| = 2 using Cauchy's integral formula.

7M CO5 L5

7M CO5 L5

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. N

	b)	Establish the relationship between number of poles, frequency and synchronous speed for a 3- phase alternator. OR	4M	CO3	
6.		Draw the Equivalent Circuit of Single-phase transformer of rating 5kVA, 200V/400V, 50Hz, the data available from the test is as follows.			
		O.C test from LV side: 200V 1.25A 150W			
		S.C test from HV side: 20V 12.5A 175W	14M	CO3	L6
		UNIT–IV			
7.	a)	Explain the concept of Rectifier and its application.	4M	CO4	L2
	b)	An Ac supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10: 1.			
		Calculate (i) the output d.c. voltage (ii) the peak inverse voltage. iii) ripple			
		factor and iv) Transformer utilization factor Assume the diode to be ideal.			
		Fig.1	10M	CO4	L3
		OR			
8.		Briefly Explain the operation of Bridge Rectifier with necessary diagrams and derive the following terms			
		i) Dc Output voltage ii) Peak Inverse Voltage iii) Ripple Factor	14M	CO4	12
g	a)	List out the various applications of CRO in Laboratories.	4M	C05	L1
0.	b)	Draw a basic block diagram of a CRO and explain the features of CRO in	1101	000	
	5)	details.	10M	C05	L2
		OR			
10.	a)	Explain the theory of dielectric heating. State its advantages and industrial applications	7M	C05	L2
	b)	List out some of the applications of induction heating	7M	C05	L1
	·	***			

	R-19								
	Il B.Tech. I Semester Supplementary Examinations November 2023								
	Basic Thermodynamics								
	(Mechanical Engineering)								
Ν	Nax. Marks: 70 Time: 3 Hours								
A	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)								
	*****	Mai							
	UNIT–I								
1. a	What is meant by displacement work? Explain the same with reference to the Quasi-static process.	7							
b		7							
	OR								
2. a		6							
b									
	0.03m ³ . Assuming that pressure and volume are related by PV ⁿ = constant. Find the work interaction during the process. Identify whether it a work producing system or work								
	absorbing system.	8							
	UNIT-II								
3. a	Write short notes on Second law of Thermodynamics.	7							
b	Bring out the concept of entropy and importance of T-s diagram.	7							
	OR								
4. a									
	 i) A copper block of 750 g mass and with Cp of 150 J/kg K at 100°C is placed in a lake at 9°C. ii) The same block at 9°C is dropped from a height of 100 m into the lake. 								
	iii) Two such blocks at 100 and 0°C are joined together.	14							
	UNIT–III								
5. a	Explain the concept of Triple point.	7							
b		7							
6 0	OR Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when								
6. a	(i) its quality is 80% (ii) it is dry saturated (iii) Superheated the degree of superheat being $65 ^{\circ}$ C.	14							
7. a		10							
b									
	the mass of hydrogen in the balloon.	4							
8. a	OR A constant volume chamber of 0.3 m ³ capacity contains 2 kg of this gas at 5 ^o C. Heat is								
0. u	transferred to the gas until the temperature is100°C. Find the work done, the heat								
	transferred and the changes in internal energy, enthalpy and entropy.	10							
b	Write a short note on compressibility factor.	4							
	UNIT-V								
9. a		6							
b	Explain Mass fraction .Mole fraction, Internal energy and specific heat of gas mixtures OR	8							
10. a) A Vessel of 5 m ³ capacity contains two gases A and B in proportion of 40% and									
		14							
ю. а	respectively at 25°C .If the value of R for the gases is 0.288 kj/kgK and 0.295kj/kgK and if the total weight of the mixture is 2 kg calculate (i) partial pressure (ii) total pressure (iii) the mean value of gas constant for the mixture.								