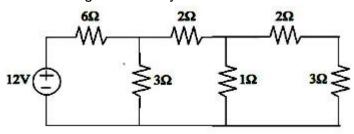
Code: 19A237T

II B.Tech. I Semester Supplementary Examinations March/April 2023 Electrical Circuits and Technology

(Electronics and Communication Engineering)

Max. Marks: 70


Time: 3 Hours

R-19

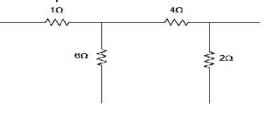
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Determine the loop currents using Mesh Analysis and also the branch voltages

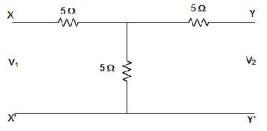
OR

- 2. Explain source transformation and how can it be used to convert (i) a practical voltage source into a practical current source; (ii) a practical current source into a practical voltage source.
- 3. Define Average & RMS Value, Form Factor, Peak Factor, Peak Value, Peak to Peak Value OR

UNIT-II


- 4. a) What are the Advantages of AC Supply
 - b) Define Cycle, Time Period, Frequency & Amplitude

UNIT-III


Explain with defining equations about i) y-parameters; ii) z-parameters; iii) ABCD-parameters;
 (iv) h-parameters.

OR

6. a) Determine h parameters for the two port network shown below

b) Determine ABCD parameters for the two port network shown below

UNIT–IV

- A long-shunt compound generator delivers a load current of 50 A at 500 V and has armature, series field and shunt field resistances of 0.05 , 0.03 and 250 respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop.
 - b) List the types of characteristics in a dc generator?

OR

8. With the help of sketches describe the main parts of a dc machine? Explain the main function of each.

- 9. a) Write the principle of Induction motor.
 - b) Explain with the help of suitable diagram how the rotating magnetic field is produced in a three phase motor?

OR

- 10. a) Define practical transformer and explain the phasor diagram on NO-Load.
 - b) The no load current of a transformer is 10A at a power factor of 0.25 lagging, when connected to 400V, 50Hz supply. Calculate, i) Magnetizing component of no load current ii) Iron loss iii) Maximum value of flux in the core

		Iall Ticket Number : R-1	9
	С	ode: 19A431T II B.Tech. I Semester Supplementary Examinations March/April 2023	2
		Electronic Circuits)
		(Electronics and Communication Engineering)	
	١	Max. Marks: 70 Time: 3	Hours
	A	Answer any five full questions by choosing one question from each unit (5x14 = 70 N	∧arks)
		*****	Marks
		UNIT–I	
1.		Consider a single Stage CE Amplifier with Rs=1K , R_1 =50K , R_2 =2K , Rc=2K ,	
		hfe=50, hie=1.1K , hoe=25 μ A/V and hre= 2.5X10-14.Find Ai!, Ri!, AV!, Ai=I _L /I _S , AVS=V ₀ /V _S .	14M
		OR	14101
2	a)	Derive the expressions of Millers theorem and its dual.	7M
2.	b)	Draw and explain the circuit of cascaded amplifier and mention the advantages	7M
	~)	UNIT-II	
3.	a)	What is the significance of 3dB bandwidth?	6M
	b)	Explain the frequency response of amplifier at Low, Mid and High frequencies	8M
		OR	
4.	a)	A BJT has the following parameters measured at ic=1mA, hie=3K , hfe=500,	
		FT=4MHz, Cc=2pF, Ce=18pF. Find rb!e, gm, rce and fH for RL=1K	6M
	b)	The following low frequency parameters are known for a given transistor at room	
		temperature (3000 K) at IC = 10 mA and VCE = 8 volts: hie = 500 , hoe = $2 \times 10^{-4} \mu$ S,	
		hfe = 100 and hre = 10^{-4} . At the same operating point, fT = 50 MHz and Cob (Cc)=3pF.	8M
		Calculate the values of hybrid- parameters.	OIVI
5.		When the negative feedback is applied to an amplifier of gain 100, the overall gain falls	
0.		to 50. Calculate (i) the feedback factor (ii) if the same feedback factor maintained, the	
		value of the amplifier gains required if the overall gain is to be 75.	14M
_		OR	
6.		Derive the expression for input impedance and output impedance for the current series and current shunt feedback amplifiers.	14M
			14101
7.	a)	List out the types of oscillators.	7M
	⊆, b)	With neat diagram explain about amplitude stability of oscillators.	7M
	-,	OR	
8.	a)	What are the features and advantages of crystal oscillator?	7M
	b)	With neat diagram explain about frequency stability of oscillators.	7M
		UNIT–V	
9.	a)	Explain crossover distortion in Class B power amplifier	7M
	b)	What is Q Factor? Write about unloaded and loaded Q in tuned circuit.	7M
		OR	
0.		Draw and explain class B push pull amplifier. Show that in class B push pull amplifier the maximum conversion officiency is 78.5%	1 / 1 / 1
		the maximum conversion efficiency is 78.5%.	14M

Hall Ticket Number :							
Code: 19AC31T	R-19						
II B.Tech. I Semester Supplementary Examinations March/April 2023 Partial Differential Equations and Complex Variables							
(Common to CE, EEE, ME & ECE)	ne: 3 Ho						
Answer any five full questions by choosing one question from each unit (5x14							
	Marks	СО	BL				
1. a) Find the L.T of $e^{-3t} \left(2\cos 5t - 3\sin 5t \right)$	7M	1	L1				
b) Find $L\{e^{3t}\sin^2 t\}$	7M	1	L1				
OR	7 101	1	LI				
2. Find $L\{f(t)\}$, where $f(t)$ is aperiodic function of the							
$(\sin t, 0 < t < f)$							
period $2f$ and it is given by $f(t) = \begin{cases} \sin t, & 0 < t < f \\ 0, & f < t < 2f \end{cases}$	4 4 5 4						
	14M	1	L3				
3. a) Find $L^{-1}\left\{\frac{s+3}{s^2-10s+29}\right\}$	714						
b) Find $L^{-1}\left\{\frac{2s+12}{s^2+6s+13}\right\}$							
(s +0s+15) OR	7M	2	L1				
4. Using convolution theorem , find $L^{-1}\left\{\frac{1}{\left(s^2+a^2\right)^2}\right\}$							
$\left(s^2 + a^2\right)^2$	4 4 5 4						
	14M	2	L3				
5. Express $f(x) = x - f$ as Fourier series in the interval							
-f < x < f	14M	3	L2				
OR							
6. Find the Fourier Series to represent $f(x) = x^2 - 2$ when							
$-2 \le x \le 2.$	14M	3	L1				
	D. 1	- { - 2					
	Page 1	OT 2					

7. Solve by the method of separation of variables

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y} + 2z$$
14M 4 L3
OR
8. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$
subject to the condition
 $u(0,t) = 0, u(L,t) = 0, t > 0 \text{ and } u(x,0) = 3\sin\left(\frac{fx}{L}\right), 0 < x < L.$
14M 4 L3
9. a) Find all values of k, such that
 $f(z) = e^x (\cos ky + i \sin ky) \text{ is analytic.}$
7M 5 L1
b) Show that the function $f(z) = z\overline{z}$ is differentiable but not
analytic at $z = 0.$
7M 5 L2
OR
10. Evaluate using Cauchy's theorem $\int_c \frac{z^3 e^{-z}}{(z-1)^3} dz$ where c is

$$|z-1| = \frac{1}{2}$$
. Using Cauchy's integral formula.

	Hall Ticket Number :									
	Code: 19A432T									
	II B.Tech. I Semester Supplementary Examinations March/April 2023									
	Random Variables Theory									
	,	(Electronics and Communication Engineering) Max. Marks: 70 Time	. 3 Ho	urc						
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********										
Marks CO BL										
1.	a)	Define and explain the following with an example:								
		i. Equally likely events ii. Exhaustive events iii. Mutually exclusive events	7M	CO1	L2					
	b)	A box contains 4 red and 5 white balls. An experiment is to draw two balls from the box without replacement. What is the probability that the first ball is white								
		and second ball is white?	7M	CO1	L3					
_		OR								
2.	a)	Give the classical & axiomatic definitions of probability	7M	CO1	L2					
	b)	A Single card is drawn from the deck of 52 cards, what is the probability of the following i) Card will be a 10 or greater? ii) Card is greater than 10								
		iii) Compare the results in i & ii	7M	CO1	L3					
		UNIT–II								
3.	a)	Define and explain the classification of a random variable.	7M	CO2	L2					
	b)	A random variable X has the density function $f_X(x) = (1/5)u(x) e^{-x/5}$. Find the								
		probability of events i) $A = \{1 < X \ 3\}$ ii) $B = \{X \ 2.5\}$ iii) $C = \{X > 2.5\}$	7M	CO2	L3					
1	2)	OR Define the experiential random variable function and write its applications	714	<u> </u>	10					
4.	a) b)	Define the exponential random variable function and write its applications What are conditional distribution functions? List properties of conditional	7 171	CO2	LZ					
	0)	distribution function.	7M	CO2	L2					
		UNIT–III								
5.		Let X is an exponential density function. Determine Variance, Skew and the								
coefficient of skewness of X. 14M CO3										
6	a)	OR Define and explain Moment Generating Function	7M	CO3	12					
0.	a) b)	A random variable X has pdf $f_x(x) = (1/b)e^{-(x-a)/b}$. Find its moment generating	7 111	005	LZ					
	5)	function and use it to generate first order moment about origin.	7M	CO3	L3					
		UNIT–IV								
7.		Explain the joint conditional distribution & density function with relevant expressions OR	14M	CO3	L2					
8.		State and explain the Central Limit Theorem.	14M	CO3	L2					
	UNIT-V									
9.		What is meant by time average and ergodicity of a random process? Explain their properties.	14M	CO5	L2					
		OR								
10.	,	When do you call two random processes to be jointly wide sense stationary?	7M	CO5	L3					
	b) Find the mean and variance of the given auto correlation function.									
		$R_{XX}() = 25 + \frac{4}{1+6\tau^2}$	7M	CO5	L5					

	ł	Hall Ticket Number :]		
	Code: 19A434T							19							
	C		neste	er Su	lqqu	em	entc	ary E	xam	nina	tion	s Mo	arch	n/April 20	23
	II B.Tech. I Semester Supplementary Examinations March/April 2023 Signals and Systems														
	(Electronics and Communication Engineering)														
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********														
	Marks UNIT–I									Marks					
1.	a)) Obtain the expressions to represent trigonometric Fourier coefficients in terms of								of 7M					
	b)	Define Fourier series Fourier series represe			f(t) .	Deriv	ve th	e Re	latior	nship	betv	veen	vario	ous types o	of 7M
							C	R							
2.	a)	Find the even and odd $x(t) = a_{0}a_{1}t + a_{1}a_{2}t$		•	ents	of the	e follo	wing	sign	al					7M
	b)	x(t) = cost + sint + 2sin Determine whether the			na si	anals	s are	peri	odic	or n	ot?	lfpe	eriodi	c determine	
)	fundamental period.			•	•									
		i) $\cos t + \sin \sqrt{2}$	2 <i>t</i> c	os <i>t</i>	ii)	2c	os1	00ƒ	^c t +	- 5 s	in 5	50 <i>t</i>			7M
							UN	IT–II							
3.		Define Fourier transfo	rm. E	xplai	n the	e pro	pertie	s of I	=ouri	er tra	insfo	rm			14M
								R					_		
4.	a) b)	Obtain the Fourier trai			•				•	es w	ith pe	eriod	Τ.		7M
	b)	Obtain the Fourier trai i) Unit step function ii)					•	incuo	ns.						7M
				-			UN	IT–III							
5.	a)	What is the impulse re	-				-		onne	cted	in pa	rallel	?		7M
	b)	Explain the Filter char	acter	istics	of li	near	-								7M
6	a)	Explain the difference	hetw	een t	the fo	allow)R /stem	אר						
0.	u)	i) Linear and non-linea					• •			ie inv	ariar	it sys	tems	5	7M
	b)	Discuss the conditions	s for o	distor	tionle	ess ti									7M
7	-)	Eveloie the velotion he	4					IT–IV							-14
7.	a) b)	Explain the relation be Derive the relation be									TIS	iston	n		7M 7M
	0)	Derive the relation bei		11 01	55 01	inpu) R	utio		_11.5	Jacon	1		7 101
8.	a)	With an example expl	ain th	e Gr	aphio	cal re	prese	entati	on of	con	voluti	on.			7M
	b) Prove that auto correlation function and energy/power spectral density function forms														
	Fourier Transform pair. 7N UNIT-V								7M						
9.	a)	Derive the relation bet	tweer	n Z tra	ansfo	⊳rm a				sforr	n				7M
	b)	Discuss any 3 propert	Discuss any 3 properties of Laplace transform.									7M			
								R							
10.	a)	Prove the differentiat transform	ion p	orope	rty c	of Z-t	ransf	orm.	Ехр	lain 1	the c	conce	ept o	f ROC in Z	Z 7M
	 b) Give the relationship between z-transform ,Fourier transform and Laplace Transform 7M *** 								Lapla	7M					

	Hall Ticket Number : R-19	7
(Code: 19A433T	
	II B.Tech. I Semester Supplementary Examinations March/April 2023	
	Digital Design (Electronics and Communication Engineering)	
	Max. Marks: 70 Time: 3 H	Hours
	Answer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ M})$	
	*****	Marks
	UNIT–I	Marks
1.	For a Given 11-bit data word 11001100110,generate the 15-bit hamming code word	14M
	OR	
2. a)	Perform a+b, a*c and c/a operations in a given data a=1001,b=101,c=10001	7M
b)	· · · · · · · · · · · · · · · · · · ·	7M
0		
3.	Obtain minimal expression using the K-map for a given Boolean function	14M
	F(A,B,C,D,E)= (0,2,8,10,12,13,14,22,23,25,29,30,31) and implement using NOR Gates OR	14111
4. a)		7M
b)		7M
,		7 101
5. a)	Realize a circuit which generates the square of a 3-bit binary number by using PLA	10M
b)		4M
•	OR	
6.a)		7M
b)	Design a circuit which convert given 4-bit gray code to binary code UNIT-IV	7M
7. a)		8M
b)		6M
	OR	••••
8. a)	Design 4-bit twisted Ring counter and explain operation.	7M
b)		7M
	UNIT-V Derive ASM chart for a JK-FF	
9.a) b)		7M
0)	OR	7M
0.	Convert given Mealy machine into Moore machine	
0.	NS 7	
	PS X=0 X=1	
	1 1,0 1,0 2 1,1 6,1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	4 1,1 7,0	
	5 2,0 3,0	
	6 4,0 5,0	

7	2,0	3,0	14M
6	4,0	5,0	