Code: 19A237T

2023

Electrical Circuits and Technology

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Determine the loop currents using Mesh Analysis and also the branch voltages

OR
2. Explain source transformation and how can it be used to convert (i) a practical voltage source into a practical current source; (ii) a practical current source into a practical voltage source.

UNIT-II

3. Define Average \& RMS Value, Form Factor, Peak Factor, Peak Value, Peak to Peak Value OR
4. a) What are the Advantages of AC Supply
b) Define Cycle, Time Period, Frequency \& Amplitude

UNIT-III

5. Explain with defining equations about i) y-parameters; ii) z-parameters; iii) ABCD-parameters; (iv) h-parameters.

OR
6. a) Determine h parameters for the two port network shown below

b) Determine ABCD parameters for the two port network shown below

UNIT-IV

7. a) A long-shunt compound generator delivers a load current of 50 A at 500 V and has armature, series field and shunt field resistances of $0.05,0.03$ and 250 respectively. Calculate the generated voltage and the armature current. Allow 1 V per brush for contact drop.
b) List the types of characteristics in a dc generator?

OR

8. With the help of sketches describe the main parts of a dc machine? Explain the main function of each.

UNIT-V

9. a) Write the principle of Induction motor.
b) Explain with the help of suitable diagram how the rotating magnetic field is produced in a three phase motor?

OR

10. a) Define practical transformer and explain the phasor diagram on NO-Load.
b) The no load current of a transformer is 10 A at a power factor of 0.25 lagging, when connected to $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate, i) Magnetizing component of no load current ii) Iron loss iii) Maximum value of flux in the core

Hall Ticket Number :

Code: 19A431T

R-19

|| B.Tech. I Semester Supplementary Examinations March/April 2023
Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks

UNIT-I

1. Consider a single Stage $C E$ Amplifier with $R s=1 \mathrm{~K}, \mathrm{R}_{1}=50 \mathrm{~K}, \mathrm{R}_{2}=2 \mathrm{~K}, \mathrm{Rc}=2 \mathrm{~K}$, hfe=50, hie $=1.1 \mathrm{~K}$, hoe $=25 \mu \mathrm{~A} / \mathrm{V}$ and hre= 2.5X10-14.Find Ai!, Ri!, $A V^{!}, A i=I _/ l_{\mathrm{s}}$, $\mathrm{AVS}=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$.

OR

2. a) Derive the expressions of Millers theorem and its dual.
b) Draw and explain the circuit of cascaded amplifier and mention the advantages

UNIT-II

3. a) What is the significance of 3 dB bandwidth?
b) Explain the frequency response of amplifier at Low, Mid and High frequencies

OR

4. a) A BJT has the following parameters measured at ic $=1 \mathrm{~mA}$, hie $=3 \mathrm{~K}$, hfe $=500$, $\mathrm{FT}=4 \mathrm{MHz}, \mathrm{Cc}=2 \mathrm{pF}, \mathrm{Ce}=18 \mathrm{pF}$. Find rb!e, gm, rce and fH for RL=1K
b) The following low frequency parameters are known for a given transistor at room temperature $(3000 \mathrm{~K})$ at $I \mathrm{C}=10 \mathrm{~mA}$ and VCE $=8$ volts: hie $=500$, hoe $=2 \times 10^{-4} \mathrm{~S}$, hfe $=100$ and hre $=10^{-4}$. At the same operating point, $\mathrm{fT}=50 \mathrm{MHz}$ and $\mathrm{Cob}(\mathrm{Cc})=3 \mathrm{pF}$. Calculate the values of hybrid- parameters.

UNIT-III

5. When the negative feedback is applied to an amplifier of gain 100 , the overall gain falls to 50 . Calculate (i) the feedback factor β (ii) if the same feedback factor maintained, the value of the amplifier gains required if the overall gain is to be 75 .

OR

6. Derive the expression for input impedance and output impedance for the current series and current shunt feedback amplifiers.

UNIT-IV

7. a) List out the types of oscillators.
b) With neat diagram explain about amplitude stability of oscillators.

OR

8. a) What are the features and advantages of crystal oscillator?
b) With neat diagram explain about frequency stability of oscillators.

UNIT-V

9. a) Explain crossover distortion in Class B power amplifier
b) What is Q Factor? Write about unloaded and loaded Q in tuned circuit.

OR

10. Draw and explain class B push pull amplifier. Show that in class B push pull amplifier the maximum conversion efficiency is 78.5%.

Code: 19AC31T

|| B.Tech. I Semester Supplementary Examinations March/April 2023

Partial Differential Equations and Complex Variables

 (Common to CE, EEE, ME \& ECE)Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the L.T of $e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$
b) Find $L\left\{e^{3 t} \sin ^{2} t\right\}$

OR

2. Find $L\{f(t)\}$, where $f(t)$ is aperiodic function of the period 2π and it is given by $f(t)= \begin{cases}\sin t, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}$

UNIT-II

3. a) Find $L^{-1}\left\{\frac{s+3}{s^{2}-10 s+29}\right\}$

OR

4. Using convolution theorem, find $L^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right\}$

UNIT-III

5. Express $f(x)=x-\pi$ as Fourier series in the interval $-\pi<x<\pi$

14M
3 L2

OR

6. Find the Fourier Series to represent $f(x)=x^{2}-2$ when

$$
-2 \leq x \leq 2
$$

UNIT-IV

7. Solve by the method of separation of variables

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial y}+2 z
$$

8. Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the condition

$$
u(0, t)=0, u(L, t)=0, t>0 \text { and } u(x, 0)=3 \sin \left(\frac{\pi x}{L}\right), 0<x<L .
$$

UNIT-V

9. a) Find all values of k, such that $f(z)=e^{x}(\cos k y+i \sin k y)$ is analytic.
b) Show that the function $f(z)=z \bar{z}$ is differentiable but not analytic at $z=0$.

OR

10. Evaluate using Cauchy's theorem $\int_{c} \frac{z^{3} e^{-z}}{(z-1)^{3}} d z$ where c is
$|z-1|=\frac{1}{2}$. Using Cauchy's integral formula.
|| B.Tech. I Semester Supplementary Examinations March/April 2023
Random Variables Theory
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define and explain the following with an example:
i. Equally likely events ii. Exhaustive events iii. Mutually exclusive events

7M CO1
L2
b) A box contains 4 red and 5 white balls. An experiment is to draw two balls from the box without replacement. What is the probability that the first ball is white and second ball is white?

OR

2. a) Give the classical \& axiomatic definitions of probability
b) A Single card is drawn from the deck of 52 cards, what is the probability of the following i) Card will be a 10 or greater? ii) Card is greater than 10 iii) Compare the results in i \& ii

UNIT-II

3. a) Define and explain the classification of a random variable.
b) A random variable X has the density function $f_{X}(x)=(1 / 5) u(x) e^{-x / 5}$. Find the probability of events i) $A=\{1<X \leq 3\}$ ii) $B=\{X \leq 2.5\}$ iii) $C=\{X>2.5\}$

OR
4. a) Define the exponential random variable function and write its applications
b) What are conditional distribution functions? List properties of conditional distribution function.

UNIT-III

5. Let X is an exponential density function. Determine Variance, Skew and the coefficient of skewness of X.

OR

6. a) Define and explain Moment Generating Function
b) A random variable X has pdf $f_{x}(x)=(1 / b) e^{-(x-a) / b}$. Find its moment generating function and use it to generate first order moment about origin.
$7 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 3$

UNIT-IV

7. Explain the joint conditional distribution \& density function with relevant expressions

OR

8. State and explain the Central Limit Theorem.

14M CO3 L2

UNIT-V
9. What is meant by time average and ergodicity of a random process? Explain their properties.

14 M CO5 L2
OR
10. a) When do you call two random processes to be jointly wide sense stationary?

7M CO5 L3
b) Find the mean and variance of the given auto correlation function.

$$
\operatorname{Rxx}_{x}(\mathrm{~T})=25+\frac{4}{1+\epsilon \tau^{2}}
$$

Code: 19A434T

Signals and Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Obtain the expressions to represent trigonometric Fourier coefficients in terms of
exponential Fourier coefficients.
b) $\begin{array}{ll}\text { Define Fourier series of signal } f(t) \text {. Derive the Relationship between various types of } \\ \text { Fourier series representation } & 7 M \\ \text { 2. a) } & \\ & \text { Find the even and odd components of the following signal } \\ x(t)=\text { cost + sint }+2 \operatorname{sint}+4 \operatorname{cost}\end{array}$
b) Determine whether the following signals are periodic or not? If periodic determine fundamental period.
i) $\cos t+\sin \sqrt{2} t \cos t$ ii) $2 \cos 100 \pi t+5 \sin 50 t$

UNIT-II

3. Define Fourier transform. Explain the properties of Fourier transform

OR

4. a) Obtain the Fourier transform of a periodic train of impulses with period T .
b) Obtain the Fourier transform of the following functions.
i) Unit step function ii) Unit impulse function

UNIT-III
5. a) What is the impulse response of two LTI systems connected in parallel?
b) Explain the Filter characteristics of linear systems

OR

6. a) Explain the difference between the following systems.
i) Linear and non-linear systems. ii) Time variant and time invariant systems
b) Discuss the conditions for distortionless transmission.

UNIT-IV

7. a) Explain the relation between convolution and correlation.
b) Derive the relation between PSDs of input and output for an LTI system 7M

OR

8. a) With an example explain the Graphical representation of convolution.
b) Prove that auto correlation function and energy/power spectral density function forms Fourier Transform pair.

UNIT-V

9. a) Derive the relation between Z transform and Fourier transform
b) Discuss any 3 properties of Laplace transform.

OR

10. a) Prove the differentiation property of Z-transform. Explain the concept of ROC in $\mathrm{Z} \quad 7 \mathrm{M}$
transform
b) Give the relationship between z-transform ,Fourier transform and Laplace Transform 7M

Code: 19A433T

|| B.Tech. I Semester Supplementary Examinations March/April 2023

Digital Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks
UNIT-I

1. For a Given 11-bit data word 11001100110 ,generate the 15 -bit hamming code word

OR

2. a) Perform $a+b, a^{*} c$ and c / a operations in a given data $a=1001, b=101, c=10001$
b) State and prove the De-Morgan's theorems

UNIT-II

3. Obtain minimal expression using the K -map for a given Boolean function $F(A, B, C, D, E)=\Sigma(0,2,8,10,12,13,14,22,23,25,29,30,31)$ and implement using NOR Gates

OR

4. a) What are the limitations of K-Map method
b) Realize XOR gate using NAND gates

UNIT-III

5. a) Realize a circuit which generates the square of a 3-bit binary number by using PLA
b) Draw the architecture of ROM and PAL

OR

6. a) Explain basic operation of De-multiplexer 7 M
b) Design a circuit which convert given 4-bit gray code to binary code 7M UNIT-IV
7. a) Design MOD-63 asynchronous counter
b) What is meant by race around condition in JK-FF? How to avoid it. 6 M

OR

8. a) Design 4-bit twisted Ring counter and explain operation.
b) Define excitation table, state table and state diagram 7M 7

UNIT-V

9. a) Derive ASM chart for a JK-FF
b) List out the salient features of the ASM chart

OR

10. Convert given Mealy machine into Moore machine

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
1	1,0	1,0
2	1,1	6,1
3	4,0	5,0
4	1,1	7,0
5	2,0	3,0
6	4,0	5,0
7	2,0	3,0

