	Hall Ticket Number :	D 14	,	
(Code: 19AC31T	R-19	,	
	Il B.Tech. I Semester Supplementary Examinations July/ Partial Differential Equations and Complex Va (Common to All Branches)	_		
	Max. Marks: 70 Answer any five full questions by choosing one question from each ur ***********************************	Time: 3 H nit (5x14 = 70 M		
	UNIT-I	Marks	СО	Blooms Level
1. a)	Find the Laplace Transform of $e^{2t} + 4t^3 - 2\sin 3t + 3\cos 3t$	7M	CO1	L1
b)	Find the L.T of $(t^2 + 1)^2$	7M	CO1	L1
	OR			
2.	Find $L\left\{e^{-3t}\int_0^t \frac{\sin t}{t}dt\right\}$	14M	CO1	L1
3.	Find inverse L.T of $\frac{5s-2}{s^2(s+2)(s-1)}$	14M	CO2	L1
	OR		002	_,
4.	Using convolution theorem , find $L^{-1}igg\{rac{1}{(s+a)(s+b)}igg\}$	14M	CO2	L3
5.	Obtain the Fourier series for $f(x) = x - x^2$ in the interval $[-f, f]$. Hence S	Show that		
	$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$	14M	CO3	L3
6.	OR Find the half range sine series for $f(x) = x(f - x)$ in $0 < x < f$ dec	duce that		
	$\frac{1}{1^{3}} - \frac{1}{3^{3}} + \frac{1}{5^{3}} - \frac{1}{7^{3}} + \dots = \frac{f^{2}}{32}$ UNIT-IV		CO3	L1
7.	Use separation of variables to solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2} + 2u$ in the form $u = \frac{\partial^2 u}{\partial y}$	f(x)g(y).		
	Obtain the solution satisfying $u = 0$, $\frac{\partial u}{\partial x} = 1 + e^{-3y}$ when $x = 0$ for all value	es of y. 14M	CO4	L3
8.	A homogeneous rod of conducting material of length 100 cm has its endozero temperature and the temperature initially is $u(x,0) = \begin{cases} x & ; 0 \le x \le 50 \\ (100-x) & ; 50 \le x \le 100 \end{cases}$	ds kept at		
	$u(x,0) = (100 - x)$; $50 \le x \le 100$ Find the temperature $u(x,t)$ at any time.	14M	CO4	L3

UNIT-V

2.

3.

4.

5.

6.

7.

8.

Find the conjugate harmonic function of the harmonic function $u = x^2 - y^2$ 9. 14M CO5 L1

Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz \quad where \quad c: |z| = 3.$ 10. 14M CO5 L5

Hall Ticket Number :							
		1	Į.			JI	R-19

Code: 19A432T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Random Variables Theory

(Electronics and Communication Engineering)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Define and explain the Joint and conditional probability.	7M	CO1	L2
	b)	A lot of 100 semiconductor chips contain 20 that are defective. Two conselected at random, without replacement, from the lot.	hips are		
		 i. What is the probability that the second one selected is defective gi the first one was defective. 	ven that		
		ii. What is the probability that both are defective?	7M	CO1	L3
		OR			
2.	a)	Explain the concept of Baye's Theorem.	7M	CO1	L2
	b)	A diagnostic test has 99% accuracy and 60% of all people have Covid			
		patient tests positive, what is the probability that they actually have the d	lisease? 7M	CO1	L3
3.	a)	Define a random variable and list the conditions of a variable satisfied to	0		
	,	become a random variable.	4M	CO2	L2
	b)	Define probability distribution function. List & prove their properties.	10M	CO2	L2
		OR			
4.	a)	Define and formulate the Poisson distribution and density function.	6M	CO2	L2
	b)	average rate of 50 / hour. The station has only one gasoline pump. If are assumed to require one minute to obtain fuel. What is the probability	all cars ty that a		
		waiting line will occur at the pump?	8M	CO2	L3
_	- \	UNIT-III	48.4	000	
5.	a)	Define an expected value of a random variable X.	4M	CO3	L2
	b)	What is the expected value of an exponential random variable X?	10M	CO3	L3
•	- \	OR	71.4	000	1.0
6.	a)	·	7M	CO3	L3
	b)	Discuss the concept of functions that give moments.	7M	CO3	L2
7		UNIT-IV	of initial		
7.		Define Joint probability distribution function and Explain the properties of distribution function.	or joint 14M	CO3	L2
		OR			
8.	a)	Explain about the jointly Gaussian random variables.	7M	CO3	L2
	b)	Explain about the joint characteristic function.	7M	CO3	L2
	,	UNIT-V			
9.		Define stationary. Explain the first order, second order and wide sense	4 48 4	005	
		stationary. OR	14M	CO5	L2
10.		List and prove all the properties of cross-correlation function	14M	CO5	L2
		List and prove all the proportion of blood confoliation fundable	1-7171		L _

	Hall	I Ticket Number :	7
L	Cod	R-19	
	Cou	II B.Tech. I Semester Supplementary Examinations July/August 2022	
		Signals and Systems	
		(Electronics and Communication Engineering)	
		x. Marks: 70 wer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ************************************	
		******	Marks
	,	UNIT-I	
1.	a)	Explain the various operations on signals	7M
	b)	Determine whether the following signals are periodic or not? If periodic determine fundamental period.	
		i) $\cos t + \sin \sqrt{2}t \operatorname{Cost}$ ii) $2\cos 100ft + 5\sin 50t$	7M
		OR	
2.	,	State and prove convolution property in Fourier series.	7M
	b)	Find the exponential Fourier series and plot the magnitude and phase spectrum of half wave rectified sine wave with amplitude A and T =2	7M
		UNIT-II	
3.	,	Find the Fourier transform of DC Signal	7M
	b)	Find the Fourier transform of $x(t) = u(2t)$, where $u(t)$ is the unit step function OR	7M
4.	a)	State and prove Differentiation and integration properties of Fourier Transform.	7M
т.	b)	Obtain the Fourier transform of Signum function and sketch its phase spectrum.	7M
	ω,	UNIT-III	
5.	a)	Differentiate LTI system with LTV system.	7M
	b)	Find the impulse response of series RC limit. Explain the difference between causal and non-causal systems.	7M
		OR	
6.		Discuss about the Causality and physical reliability of a system.	7M
	b)	The output response of a continuous time LTI system is $2e^{-3t}u(t)$ when the input x(t) is	
		u(t) find the Transfer function.	7M
7	۵)	Ctate and prove Time convolution property	71.4
7.	a) b)	State and prove Time convolution property State and prove any four properties of Auto correlation function	7M 7M
	D)	OR	<i>1</i> IVI
8.	a)	With an example explain the Graphical representation of convolution.	7M
	b)	Explain about the properties of LTI system	7M
	,	UNIT-V	
9.	a)	Explain the constraints on ROC for various classes of signals	7M
	b)	State and prove the following properties of z-transform.	
		i) Time shifting ii) Time reversal iii) Differentiation iv) Scaling in z-domain	7M
		OR	
10.		Find the z-Transform of i) $X(z) = 1/(1-0.5z^{-1}+0.5-2)$ for ROC $Z > 1$ ii) $1/(z^2 -1.2z+0.2)$	14M
		$1) \ A(2) = 1/(1-0.52^{4}+0.5-2) \ 101 \ ROG \ 2 > 1 $	1-+171

Hall Ticket Number :						
• • • • • • • • • • • • • • • • • • • •						R-19

Code: 19A433T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Digital Design

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 70

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		UNIT-I	Marks
1.	3)	Write a short note on error correcting and detecting codes	10M
١.	,		_
	b)	How many parity check bits are required for 64 bits of data word	4M
_		OR	
2.	a)	Write a short note on logic gates and their truth tables	10M
	b)	List out the properties of XOR gate	4M
		UNIT-II	
3.	a)	Realize XOR gate using NAND gates	7M
	b)	Simplify the following expression using K-map. $Y = AB'C+A'BC+A'B'C+A'B'C'$	7M
		OR	
4.		Obtain minimal expression using the K-map for a given Boolean function	
		F(A,B,C,D,E) = (0,2,8,10,12,13,14,22,23,25,29,30,31) and implement using NOR Gates	14M
		UNIT-III	
5.	a)	Design a circuit which convert given 4-bit gray code to binary code	7M
	b)	Differences between PAL,PLA and ROM	7M
		OR	
6.	a)	Realize a circuit which generates the square of a 3-bit binary number by using PLA	10M
	b)	Draw the architecture of ROM and PAL	4M
		UNIT-IV	
7.	a)	With a neat diagrams explain the operation of Ring counter	8M
	b)	Draw the logic diagram of LATCH using NOR and NAND gates	6M
		OR	
8.		Design MOD-12 synchronous counter using JK-FFs	14M
		UNIT-V	
9.	a)	compare Mealy and Moore machines	6M

OR

10. Convert given Mealy machine into Moore machine

List out the salient features of the ASM chart

PS	NS,Z						
го	X=0	X=1					
1	1,0	1,0					
2	1,1	6,1					
3	4,0	5,0					
4	1,1	7,0					
5	2,0	3,0					
6	4,0	5,0					
7	2,0	3,0					

14M

8M

	Hal	Ticket Number:]
(Cod	e: 19A431T	
		Il B.Tech. I Semester Supplementary Examinations July/August 2022 Electronic Circuits	
		(Electronics and Communication Engineering)	
		x. Marks: 70 Time: 3 Hours wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		*****	Marks
		UNIT-I	
1.	a)	Derive the expressions of Millers theorem and its dual.	7M
	b)	Compare the input impedance, output impedance and voltage gain of CE, CB and CC configurations. Why CE amplifiers are widely used?	7M
2.		OR A transistor in CB configuration is driven by a voltage source VS of internal resistance Rs	
۷.		= 800 . The load impedance is resistor $RL = 2000$. The h- parameters are hib = 22 ,	
		hrb = 3×10 -4, hfb = -0.98 and hob = $0.5 \mu A/V$. Compute the current gain AI, input impedance Ri, voltage gain AV, overall voltage gain AVS, overall current gain AIS and	
		output impedance Zo.	14M
		UNIT-II	
3.	a)	What is the significance of 3dB bandwidth?	7M
	b)	Explain the role of coupling capacitors and Bypass capacitors in a RC Coupled Amplifier Circuit.	7M
4	-\	OR	01.4
4.	a)	Discuss about general frequency considerations. Derive the Expressions for Output conductance (gce), transconductance (gm) and	8M
	b)	feedback conductance (gb !c) of a CE amplifier at high frequencies in terms of its low frequency h-parameters	6M
		UNIT-III	Olvi
5.	a)	Explain the advantages of negative feedback over positive feedback.	7M
	b)	Briefly discuss about the effect of feedback on amplifier bandwidth	7M
	ŕ	OR	
6.		An amplifier has voltage gain with feedback is 100. If the gain without feedback changes	
		by 20% and the gain without feedback is 2%. Determine the open loop gain and the feedback ratio.	14M
		UNIT-IV	
7.	a)	List out the types of oscillators.	7M
	b)	With neat diagram explain about amplitude stability of oscillators.	7M
•	,	OR	01.4
8.	a)	With neat diagram explain about frequency stability of oscillators.	6M
	b)	A wein bridge oscillator has a frequency of 400Hz, if the value of C is 100pF then determine the value of R.	8M
		UNIT-V	
9.	a)	Explain crossover distortion in Class B power amplifier	7M
	b)	What is Q Factor? Write about unloaded and loaded Q in tuned circuit.	7M
10.		OR A Class B Push-Pull amplifier supplies power to a loud speaker of 10 .The transformer	
10.		has a turns ratio of N1:N2 of 4:1 and efficiency is 95%.calculate the following. (i) Max power output (ii) Max power dissipation in each transistor	14M

	Hall	Ticket Number :	
(Code	e: 19A237T	
	Max	Il B.Tech. I Semester Supplementary Examinations July/August 2022 Electrical Circuits and Technology (Electronics and Communication Engineering) x. Marks: 70 Time: 3 Hour wer any five full questions by choosing one question from each unit (5x14 = 70 Marks ***********************************	
1.		UNIT-I Explain Transient Response of RL Series Circuits for DC Excitation using differential	Marks
•		equation approach OR	14M
2.		Determine the Current i using Mesh analysis	
		$ \begin{array}{c c} 1\Lambda & 32 \\ 1\Omega & 8V \\ \hline 1\Omega & 1\Omega \end{array} $ $ \begin{array}{c c} 8V \\ \hline 1\Omega & 1\Omega \end{array} $	
		UNIT-II	14M
3.	a)	What are the Advantages of AC Supply	6M
	b)	Define Cycle, Time Period, Frequency & Amplitude OR	8M
4.		Explain the series resonant circuit. Derive the expression for the resonant frequency, Quality Factor of a series resonant circuit. UNIT-III	14M
5.		Explain with defining equations about (i) y-parameters; (ii) z-parameters; (iii) ABCD-parameters; (iv) h-parameters. OR	14M
6.		For the given 2-port network, determine impedance parameters	
		2Ω' 	
		$10 \longrightarrow 4\Omega \longrightarrow 2\Omega \longrightarrow 2$	
		≥ 2 Ω	
		1'0 2'	14M
7.	a)	UNIT-IV Describe the principle of operation of a dc generator?	7M
	b)	A 2 pole lap wound generator has 200 conductors on armature. It is driven by prime mover at a constant speed of 600 rpm. If the flux per pole is 0.1 Wb, calculate the generated emf.	7 M
8.		OR How the efficiency of DC machine can be predetermined by using a swinburn's test	
۵	a)	with circuit diagram and give its advantages and disadvantages. UNIT-V Write the principle of Induction motor.	14M
9.	a) b)	Explain with the help of suitable diagram how the rotating magnetic field is produced	4M
	~)	in a three phase motor?	10M
10.		OR A 50 KVA, single phase transformer 2300/230 has primary and secondary winding resistances of 2 and 0.02 respectively. The iron losses are 412W. Calculate the efficiency at (i) Full – load (ii) Half – load When the power factor is 0.8	14M