Code: 19AC31T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Partial Differential Equations and Complex Variables

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the Laplace Transform of $e^{2 t}+4 t^{3}-2 \sin 3 t+3 \cos 3 t$

7M CO1
b) Find the L.T of $\left(t^{2}+1\right)^{2}$

7M CO1

OR

2. Find $L\left\{e^{-3 t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$

14M CO1

UNIT-II

3. Find inverse L.T of $\frac{5 s-2}{s^{2}(s+2)(s-1)}$

OR

4. Using convolution theorem, find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$

UNIT-III

14M CO2
5. Obtain the Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence Show that

OR

6. Find the half range sine series for $f(x)=x(\pi-x)$ in $0<x<\pi$ deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{32}$

UNIT-IV

7. Use separation of variables to solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$ in the form $u=f(x) g(y)$. Obtain the solution satisfying $u=0, \frac{\partial u}{\partial x}=1+e^{-3 y}$ when $x=0$ for all values of y .

OR

8. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)= \begin{cases}x & ; 0 \leq x \leq 50 \\ (100-x) & ; 50 \leq x \leq 100\end{cases}
$$

Find the temperature $u(x, t)$ at any time.

UNIT-V

9. Find the conjugate harmonic function of the harmonic function $u=x^{2}-y^{2}$

14M CO4

OR

10. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where $c:|z|=3$.

Code: 19A432T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Random Variables Theory

(Electronics and Communication Engineering)

Max. Marks: 70		Time: 3 Hours		Blooms
	Answer any five full questions by choosing one question from each unit (5x1		Marks	
		Marks	co	
	UNIT-I			
1. a)	Define and explain the Joint and conditional probability.	7M	CO1	L2
	A lot of 100 semiconductor chips contain 20 that are defective. Two chips are selected at random, without replacement, from the lot.			
	i. What is the probability that the second one selected is defective given that the first one was defective.			
	ii. What is the probability that both are defective?	7M	CO1	L3
	OR			
2. a)	Explain the concept of Baye's Theorem.	7M	CO1	L2
	A diagnostic test has 99% accuracy and 60% of all people have Covid-19. If a patient tests positive, what is the probability that they actually have the disease?	7M	CO1	L3
	UNIT-II			
3. a)	Define a random variable and list the conditions of a variable satisfied to become a random variable.	4M	CO 2	L2
b)	Define probability distribution function. List \& prove their properties. OR	10M	CO 2	L2
4. a) b)	Define and formulate the Poisson distribution and density function.	6M	CO2	L2
	Assume automobile arrivals at a gasoline station are Poisson and occur an average rate of $50 /$ hour. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel. What is the probability that a waiting line will occur at the pump?	8M	CO2	L3
	UNIT-III			
5. a)	Define an expected value of a random variable X .	4M	CO 3	L2
	What is the expected value of an exponential random variable X ?	10M	CO 3	L3
	OR			
6. a)	State and Prove the Chebyshev's inequality.	7M	CO 3	L3
	Discuss the concept of functions that give moments.	7M	CO 3	L2
	UNIT-IV			
7.	Define Joint probability distribution function and Explain the properties of joint distribution function.	14M	CO3	L2
	OR			
8. a) b)	Explain about the jointly Gaussian random variables.	7M	CO 3	L2
	Explain about the joint characteristic function.	7M	CO 3	L2
	UNIT-V			
9.	Define stationary. Explain the first order, second order and wide sense stationary.	14M	CO5	L2
	OR			
	List and prove all the properties of cross-correlation function	14M	CO 5	L2

Code: 19A434T

|| B.Tech. I Semester Supplementary Examinations July/August 2022
Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the various operations on signals
b) Determine whether the following signals are periodic or not? If periodic determine
fundamental period.

$$
\text { i) } \cos t+\sin \sqrt{2} t \text { Cost ii) } 2 \cos 100 \pi t+5 \sin 50 t
$$

OR

2. a) State and prove convolution property in Fourier series.
b) Find the exponential Fourier series and plot the magnitude and phase spectrum of half wave rectified sine wave with amplitude A and $T=2 \pi$

UNIT-II

3. a) Find the Fourier transform of DC Signal
b) Find the Fourier transform of $x(t)=u(2 t)$, where $u(t)$ is the unit step function 7 M

OR

4. a) State and prove Differentiation and integration properties of Fourier Transform.
b) Obtain the Fourier transform of Signum function and sketch its phase spectrum. 7M

UNIT-III

5. a) Differentiate LTI system with LTV system.
b) Find the impulse response of series RC limit. Explain the difference between causal and
non-causal systems.

OR

6. a) Discuss about the Causality and physical reliability of a system.
b) The output response of a continuous time LTI system is $2 e^{-3 \mathrm{t}} u(t)$ when the input $\mathrm{x}(\mathrm{t})$ is $u(t)$ find the Transfer function.

UNIT-IV

7. a) State and prove Time convolution property
b) State and prove any four properties of Auto correlation function

OR

8. a) With an example explain the Graphical representation of convolution.
b) Explain about the properties of LTI system 7M

UNIT-V

9. a) Explain the constraints on ROC for various classes of signals
b) State and prove the following properties of z-transform.
i) Time shifting
ii) Time reversal
iii) Differentiation
iv) Scaling in z-domain

OR

10. Find the z-Transform of
i) $X(z)=1 /\left(1-0.5 z^{-1}+0.5-2\right)$ for ROC $Z>1$
ii) $1 /\left(z^{2}-1.2 z+0.2\right)$
\square
Hall Ticket Number :

Code: 19A433T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Digital Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write a short note on error correcting and detecting codes
b) How many parity check bits are required for 64 bits of data word
2. a) Write a short note on logic gates and their truth tables
b) List out the properties of XOR gate

UNIT-II

3. a) Realize XOR gate using NAND gates
b) Simplify the following expression using $K-m a p . ~ Y=A B^{\prime} C+A^{\prime} B C+A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}$
4. Obtain minimal expression using the K -map for a given Boolean function

$$
F(A, B, C, D, E)=\Sigma(0,2,8,10,12,13,14,22,23,25,29,30,31) \text { and implement using NOR Gates }
$$

UNIT-III

5. a) Design a circuit which convert given 4-bit gray code to binary code
b) Differences between PAL,PLA and ROM

OR

6. a) Realize a circuit which generates the square of a 3-bit binary number by using PLA
b) Draw the architecture of ROM and PAL

UNIT-IV

7. a) With a neat diagrams explain the operation of Ring counter
b) Draw the logic diagram of LATCH using NOR and NAND gates 6M
8. Design MOD-12 synchronous counter using JK-FFs

UNIT-V

9. a) compare Mealy and Moore machines
b) List out the salient features of the ASM chart
10. Convert given Mealy machine into Moore machine

PS	NS,Z	
	$X=0$	$X=1$
1	1,0	1,0
2	1,1	6,1
3	4,0	5,0
4	1,1	7,0
5	2,0	3,0
6	4,0	5,0
7	2,0	3,0

II B.Tech. I Semester Supplementary Examinations July/August 2022

Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Derive the expressions of Millers theorem and its dual.

7M
b) Compare the input impedance, output impedance and voltage gain of CE, CB and CC configurations. Why CE amplifiers are widely used?

OR

2. A transistor in CB configuration is driven by a voltage source VS of internal resistance Rs $=800$. The load impedance is resistor $\mathrm{RL}=2000$. The h - parameters are hib $=22$, $\mathrm{hrb}=3 \times 10-4, \mathrm{hfb}=-0.98$ and hob $=0.5 \mathrm{~A} / \mathrm{V}$. Compute the current gain AI, input impedance Ri, voltage gain AV, overall voltage gain AVS, overall current gain AIS and output impedance Zo.

UNIT-II

3. a) What is the significance of 3 dB bandwidth?
b) Explain the role of coupling capacitors and Bypass capacitors in a RC Coupled Amplifier Circuit.

OR

4. a) Discuss about general frequency considerations.
b) Derive the Expressions for Output conductance (gce), transconductance (gm) and feedback conductance (gb lc) of a CE amplifier at high frequencies in terms of its low frequency h-parameters

UNIT-III

5. a) Explain the advantages of negative feedback over positive feedback.
b) Briefly discuss about the effect of feedback on amplifier bandwidth
6. An amplifier has voltage gain with feedback is 100 . If the gain without feedback changes by 20% and the gain without feedback is 2%. Determine the open loop gain and the feedback ratio.

UNIT-IV

7. a) List out the types of oscillators.
b) With neat diagram explain about amplitude stability of oscillators.

OR

8. a) With neat diagram explain about frequency stability of oscillators.
b) A wein bridge oscillator has a frequency of 400 Hz , if the value of C is 100 pF then determine the value of R.

UNIT-V

9. a) Explain crossover distortion in Class B power amplifier
b) What is Q Factor? Write about unloaded and loaded Q in tuned circuit.
10. A Class B Push-Pull amplifier supplies power to a loud speaker of 10 .The transformer has a turns ratio of $\mathrm{N} 1: \mathrm{N} 2$ of $4: 1$ and efficiency is 95%.calculate the following. (i) Max power output (ii) Max power dissipation in each transistor

Code: 19A237T

II B.Tech. I Semester Supplementary Examinations July/August 2022

Electrical Circuits and Technology
 (Electronics and Communication Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

UNIT-I

1. Explain Transient Response of RL Series Circuits for DC Excitation using differential equation approach

OR
2. Determine the Current i using Mesh analysis

UNIT-II
3. a) What are the Advantages of AC Supply 6M
b) Define Cycle, Time Period, Frequency \& Amplitude
4. Explain the series resonant circuit. Derive the expression for the resonant frequency, Quality Factor of a series resonant circuit.

UNIT-III

5. Explain with defining equations about (i) y-parameters; (ii) z-parameters; (iii) ABCDparameters; (iv) h-parameters.

OR
6. For the given 2-port network, determine impedance parameters

7. a) Describe the principle of operation of a dc generator?
b) A 2 pole lap wound generator has 200 conductors on armature. It is driven by prime mover at a constant speed of 600 rpm . If the flux per pole is 0.1 Wb , calculate the generated emf.

OR
8. How the efficiency of DC machine can be predetermined by using a swinburn's test with circuit diagram and give its advantages and disadvantages.

UNIT-V

9. a) Write the principle of Induction motor.
b) Explain with the help of suitable diagram how the rotating magnetic field is produced in a three phase motor?
10. A 50 KVA , single phase transformer 2300/230 has primary and secondary winding resistances of 2 and 0.02 respectively. The iron losses are 412W. Calculate the efficiency at (i) Full - load (ii) Half - load When the power factor is 0.8
