Code: 19A237T

|| B.Tech. I Semester Supplementary Examinations November 2023

Electrical Circuits and Technology
 (Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Derive the expression for current in terms of steady state and transient part for RC series circuit excited by a DC voltage. Also find the voltage across the resistor and power absorbed by resistor.

OR

2. Derive the equations to convert (i) Delta network to Star network; (ii) Star network to a Delta network

UNIT-II
3. a) Define Resonant frequency, Band Width \& Q-Factor 6M
b) Define Cycle, Time Period, Frequency \& Amplitude 8M

OR

4. a) Explain about the sinusoidal response of parallel RLC circuit. 4M
b) Define Average \& RMS Value, Form Factor, Peak Factor, Peak Value, Peak to 10 M
Peak Value

UNIT-III
5. The z parameters of a symmetrical four terminal network are $z_{11}=z_{22}=20$ and $z_{12}=z_{21}=5$. Find the ABCD parameters of the network

OR
6. Explain the series connection of two port networks. Which type of 2-port parameters is ideal for such a series connection?

UNIT-IV

7. a) Describe the principle of operation of a dc generator?
b) A 2 pole lap wound generator has 200 conductors on armature. It is driven by prime mover at a constant speed of 600 rpm . If the flux per pole is 0.1 Wb , calculate the generated emf.

OR

8. a) List the types of characteristics in a dc generator? 6 M
b) What is the function of commutator in a dc machines? 8 M

UNIT-V
9. a) Write the principle of Induction motor.
b) Explain with the help of suitable diagram how the rotating magnetic field is produced in a three phase motor?

OR

10. a) Define slip, rotor speed, rotor frequency, synchronous speed
b) A 3-phase induction motor is wound for 4 pole, \& is supplied from 50 HZ system calculate a) The synchronous speed b) The speed of motor when the slip is $4 \% \mathrm{c}$) The rotor current frequency when the motor runs at 600rpm

Code: 19AC31T

II B.Tech. I Semester Supplementary Examinations November 2023

Partial Differential Equations and Complex Variables

(Common to CE, EEE, ME \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL

UNIT-I

1. a) Evaluate $L\{t \sin 3 t\}$
b) Find the L.T of $L\left\{t e^{-2 t} \cos t\right\}$

7M CO1 L1
OR
2. a) Find $L\left\{\int_{0}^{t} \int_{0}^{t} \cosh a t d t d t\right\}$
b) Using L.T, Evaluate $\int_{0}^{\infty} t e^{-t} \sin t d t$

7M CO1 L3

UNIT-II

3. a) Find the inverse L.T of $\log \left(\frac{s^{2}+4}{s^{2}+9}\right)$

7 M CO2 L1
b) Find $L^{-1}\left\{\log \left(\frac{s+a}{s+b}\right)\right\}$

7 M CO2 L1
OR
4. Using L.T, solve $\left(D^{2}+4 D+5\right) y=5$, given that

$$
Y(0)=0, Y^{\prime}(0)=0
$$

14M CO2 L3

UNIT-III

5. Expand $f(x)=x^{2}, 0<x<2 \pi$ as a Fourier series. 14 M CO3 L2

OR

6. Find the Fourier Series of periodicity 3 for

$$
f(x)=2 x-x^{2} \text { in } 0<x<3
$$

UNIT-IV

7. Use separation of variables to solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$, given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t}=0$ when $x=0$. OR
8. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, Find the displacement y at any time and at any distance from the end $x=0$.

UNIT-V

9. Prove that z^{n} (n is a positive integer) is analytic and hence find its derivative.

OR

10. a) Evaluate $\int_{c} \frac{\log z}{(z-1)^{3}} d z$ where $c:|z-1|=\frac{1}{2}$. Using Cauchy's integral formula.

7M CO5 L5
b) Evaluate $\int_{c} \frac{d z}{z^{3}(z+4)}$ where C is $|z|=2$ using

Cauchy's integral formula.

Code: 19A434T

II B.Tech. I Semester Supplementary Examinations November 2023

Signals and Systems

(Electronics and Communication Engineering)Max. Marks: 70Time: 3 HoursAnswer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)*********
UNIT-I1. a) Explain the various operations on signals7M
b) Write the Classification of systems based on certain properties. 7M
OR2. a) Obtain the expressions to represent trigonometric Fourier coefficients in terms ofexponential Fourier coefficients.7M
b) Define Fourier series of signal $f(t)$.Derive the Relationship between various types of Fourier series representation 7M
UNIT-II3. a) What is the Significance of Hilbert Transform? Explain7M
b) Obtain the Fourier transform of the following functions.
i) Unit step function ii) Unit impulse function 7M
OR
4. Define Fourier transform. Explain the properties of Fourier transform 14M
UNIT-III
5. a) Differentiate LTI system with LTV system. 7M
b) Discuss the conditions for distortionless transmission. 7M
OR
6. a) State and prove the sampling theorem for a band limited signals 7M
b) State and derive the relationship between bandwidth and rise time. 7M
UNIT-IV
7. Find the graphical convolution between following signals
$x(t)=1$ for $0 \leq t \leq 2$ and $h(t)=1$ for $0 \leq t \leq 3$
0 otherwise14 M
OR
8. a) State and explain Parseval's theorem. 7M
b) State and prove any four properties of Cross correlation function 7M
UNIT-V
9. a) Find the inverse Laplace transform of $x(s)=5(s+5) / s(s+3)(s+7) ; \operatorname{Re}(s)>-3$ 7M
b) Explain the constraints on ROC for various classes of signals 7M
OR
10. a) Derive the relation between Z transform and Fourier transform 7M
b) Find the z-Transform ofi) $X(z)=1 /\left(1-0.5 z^{-1}+0.5-2\right)$ for ROC $Z>1$ii) $1 /\left(z^{2}-1.2 z+0.2\right)$7M

II B.Tech. I Semester Supplementary Examinations November 2023
 Electronic Circuits
 (Electronics and Communication Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Draw and explain the circuit of cascaded amplifier and mention the advantages
b) Draw the equivalent circuit of a CE amplifier using Millers theorem. What is the upper 3-dB frequency of such circuit?

OR

2. A transistor in CB configuration is driven by a voltage source VS of internal resistance $\mathrm{Rs}=800$. The load impedance is resistor $\mathrm{RL}=2000$. The h - parameters are hib=22 , hrb $=3 \times 10-4$, hfb $=-0.98$ and hob=0.5 A/V. Compute the current gain Al, input impedance Ri, voltage gain AV, overall voltage gain AVS, overall current gain AIS and output impedance Zo.

UNIT-II

3. a) Derive the expression for short circuit current gain AIS of a CE amplifier. Define $\mathrm{f} \beta$ and ft .
b) With hybrid π equivalent circuit, derive the expressions for trans conductance.

OR

4. a) Derive the expression of Gain Bandwidth Product.
b) Draw the Hybrid $-\pi$ model and discuss the significance of components present.

UNIT-III

5. a) Derive the expressions for input impedance, output impedance for Current series feedback.
b) Explain voltage shunt feedback employed in emitter follower with neat diagrams and obtain the expressions for voltage gain, current gain, input and output impedances
6. a) Derive the expressions for input resistance, voltage gain and output resistance of current series feedback circuit

UNIT-IV

7. Derive the expression of frequency of oscillations of Hartley oscillator.

OR

8. a) Explain the Working of transistorized Wien-bridge oscillator with neat diagram
b) Design the R \& C elements of a Wien bridge oscillator for operation at fo $=10 \mathrm{KHz}$ of Wien bridge oscillator.
UNIT-V
9. a) Give the classification of large signal amplifiers
b) Distinguish between power amplifiers.

OR

10. Explain the working principle of a push pull power amplifier. Justify your answer mathematically For a class-B Power Amplifier providing a 22V Peak signal to an 8 load and a power supply of $\mathrm{VCC}=25 \mathrm{~V}$. determine: (a) Input Power, $\mathrm{Pi}(\mathrm{dc})$ (b) Output Power, Po(ac) and (c) Circuit efficiency, \% η.
