\square

R-19

Code: 19AC34T
II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Life Sciences for Engineers

(Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Describe the types of cells and write the differences between prokaryotes and eukaryotes cells?
14M 1
OR
2. a) Explain the differences between Plant cell and Animal cell?
7M $\quad 1$
b) Describe is mitochondrion? Write their structure and important functions and draw the labelled diagram?
7M 1

UNIT-III
3. Explain the Glycolysis pathway and importance? $14 \mathrm{M} \quad 3$
OR
4. Discuss the Clavin cycle/ C_{3} cycle? $14 \mathrm{M} \quad 3$

UNIT-IV

7. a) Explain the three laws of inheritance with examples? $7 \mathrm{M} \quad 3$
b) Briefly describe the transcription and translation? $7 \mathrm{7M} \quad 3$
OR
8. Explain the Process of DNA Replication in prokaryotic and eukaryotic animals? $14 \mathrm{M} \quad 4$
UNIT-V
9. a) Write short notes on restriction enzymes? 7M 5
b) Explain the Importance of DNA Cloning? $7 \mathrm{M} \quad 5$
OR
10. a) Explain the applications of transgenic animals? 7M 5
b) Discuss the tools of Recombinant DNA Technology? 7M 5
\square

Code: 19AC31T

|| B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Partial Differential Equations and Complex Variables

(Common to CE, EEE, ME and ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the L.T of $f(t)=\left\{\begin{array}{l}\sin t, 0<t<\pi \\ 0 \quad, t>\pi\end{array}\right.$
b) Find the L.T of $\sin (w t+\alpha)$

OR

2.

Using L.T, Evaluate $\int_{0}^{\infty} \frac{e^{-t}-e^{-2 t}}{t} d t$

14 M CO1 L3
UNIT-II
3. a)

Find $L^{-1}\left\{\frac{3\left(s^{2}-2\right)^{2}}{2 s^{5}}\right\}$
7M CO2
b) Find the inverse L.T of $\frac{4}{(s+1)(s+2)}$

7M CO2 L1
OR
4.

Using convolution theorem, find $L^{-1}\{$

$$
\left\{\frac{1}{s^{2}(s+1)^{2}}\right\}
$$

14M CO2 L3

UNIT-III

5. Obtain the Fourier series expansion of $f(x)$ given that $f(x)=k x(\pi-x)$ in $0<x<2 \pi$ where k is a constant.

OR

6. Find the half range Cosine and Sine series for the function

$$
f(x)=x \text { in the range } 0<x<\pi
$$

$14 \mathrm{M} \mathrm{CO3} \mathrm{L1}$

UNIT-IV

7. Using the method of separation of variables, solve $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$

14M CO4 L3

OR

8. A string is stretched and fastened to two points at a distance " l "apart. Motion is started by displacing the string in the form $y=k\left(l x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement at any point on the string at a distance x from one end at time t.

14M CO4 L3

UNIT-V

9. a) Prove that
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Re} a l f(z)|^{2}=2\left|f^{\prime}(z)\right|^{2}$
where $w=f(z)$ is analytic.
10M CO5 L5
b) Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane.

4M CO5 L1

OR

10. Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where c is the boundary of the region by $y=x^{2}$ and $x=y^{2}$.

14M CO5 L5

Code: 19A432T

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022
Random Variables Theory
(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) Define probability. Write and explain the axioms of probability.
b) An experiment consists of observing the sum of the numbers showing up when two dice are thrown. If only three events are of interest represented by $A=\{$ sum $=7\}, B=\{8<$ sum $<=11\}$ and $C=\{10<$ sum $\}$. Calculate the probabilities of the events by developing the mathematical model for the given experiment.

7M CO1

OR
2. a) Explain the concept of Total probability.

7M CO1
b) A Single card is drawn from the deck of 52 cards, what is the probability of the following
i. Card will be a 5 or smaller?
ii. Card is less than 5.
iii. Find conditional probability of i / ii

7M CO1

UNIT-II

3. a) Define Random variable. List and define the types of random variable.

4 M CO 2
b) Define probability density function. List \& prove their properties.

10M CO2
OR
4. Define Gaussian density functions and derive the Gaussian distribution function.

14M CO2

UNIT-III

5. a) Define an expected value of a random function $g(X)$.
b) A random X is uniformly distributed on the interval (-5, 15). Another random variable $Y=e^{-x / 5}$ is formed. Find $E[Y]$.

6 M CO 3 OR
6. Find the variance of a random variable X, skew and co-efficient of skewness for the uniform density function.

14M CO3

UNIT-IV

7. Define Joint probability density function and Explain the properties of joint distribution function.

OR

8. Define and obtain the equations for joint moments about the origin and joint central moments.

14 M CO 3
9. Define auto correlation function and prove their properties.

14M CO5

OR

$\begin{array}{llll}\text { 10. a) State some useful classifications of Random Processes. } & 7 \mathrm{M} & \mathrm{CO} 4 & \mathrm{~L} 2 \\ \text { b) List all the properties of covariance function. } & 7 \mathrm{M} & \mathrm{CO} 5 & \mathrm{~L} 2\end{array}$

R-19

Code: 19A434T

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Signals \& Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. State and prove the properties of Fourier series 14M
OR
2. a) Explain the various operations on signals 7M
b) Write the Classification of systems based on certain properties. 7M

UNIT-II

3. a) What is the Significance of Hilbert Transform? Explain 7M
b) Obtain the Fourier transform of Signum function and sketch its phase spectrum.

OR

4. a) Find the Fourier transform of $x(t)=u(2 t)$, where $u(t)$ is the unit step function 7 M
b) State and prove Time Convolution property of Fourier Transform.

UNIT-III

5. a) State and derive the relationship between bandwidth and rise time.
b) What are the characteristics of ideal LPF and HPF 7M
OR
6. a) Differentiate LTI system with LTV system.
b) Find the impulse response of series RC limit. Explain the difference between causal and non-causal systems.

UNIT-IV

7. Compute \& plot the convolution $y(t)$ of the given signals:
(i) $x(t)=u(t-3)-u(t-5), h(t)=u(t)$. (ii) $x(t)=u(t), h(t)=u(t)$.

OR

8. a) State and prove Time convolution property
b) State and prove any four properties of Auto correlation function

UNIT-V

9. Find the inverse z-transform of $x(z)=\left(z^{2}+z\right) /(z-1)(z-3)$, ROC: $z>3$.

Using (i) Partial fraction method, (ii) Residue method

OR

10. a) Explain the constraints on ROC for various classes of signals 7M
b) State and prove the following properties of z-transform.
i) Time shifting ii) Time reversal iii) Differentiation iv) Scaling in z-domain

Code: 19A433T

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Digital Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks

UNIT-I

1. a) What is the difference between 1's and 2's compliments? Give one example. 7M
b) Write a short note on logic gates and their truth tables 7M
OR
2. Determine the prime implicants of the following function and verify using k-map. Y$(P, Q, R, S)=\Sigma(3,4,5,7,9,13,14,15)$
UNIT-II
3. a) Implement the following function using NAND gates $F=w x+x y(z+w)$ 9M
b) Convert the given expression in standard POS form
$F 1(A, B, C, D)=(A+B)(B+C)(A+C)$ \& $\mathrm{F} 2(\mathrm{P}, \mathrm{Q}, \mathrm{R})=\left(\mathrm{P}+\mathrm{Q}^{\prime}\right)(\mathrm{P}+\mathrm{R})$
OR
4. a) Realize the following expressions using NAND and NOR logic separately
$Y=P Q$ ' $Q S+Q^{\prime} R S^{\prime}$ 7M
b) Using K-map method, simplify the following 4-variable function $F(A, B, C, D)=\sum(0,2,4,5,6,7,8,10,13,15)$ 7M
UNIT-III
5. a) Implement a full adder with two half adders and one OR gate and explain the operation of full adder with the help of truth table 7M
b) Explain 3×8 decoder with the help of truth table 7M
OR
6. a) Realize full adder using two level basic gates. 7M
b) With a neat diagram explain operation of 2-bit magnitude comparator 7M
UNIT-IV7. a) With a neat diagrams explain the operation of Ring counter7M
b) Draw the logic diagram of LATCH using NOR and NAND gates 7M
OR
7. a) Compare synchronous and asynchronous sequential circuits. 6M
b) Draw and explain the working of 3-bit synchronous up/down counter. 8M
UNIT-V9. a) Design a sequence detector to detect the binary sequence 1111 using T Flip-flop7M
b) Draw a ASM chart for a 2-bit binary counter having one enable line E such that: $E=1$ (counting enabled) $\mathrm{E}=0$ (counting disabled) 7M
OR
8. a) Discuss about the capabilities and limitations of FSM 7M
b) Compare Mealy and Moore machines 7M

Code: 19A237T

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022
Electrical Circuits and Technology
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks
UNIT-I

1. Explain Transient Response of RL Series Circuits for DC Excitation using differential equation approach

OR

2. Explain source transformation and how can it be used to convert (i) a practical voltage source into a practical current source; (ii) a practical current source into a practical voltage source.

UNIT-II
3. Define Average \& RMS Value, Form Factor, Peak Factor, Peak Value, Peak to Peak Value

OR
4. A parallel resonance network consisting of a resistor of 60 , a capacitor of 120 uF and an inductor of 200 mH is connected across a sinusoidal supply voltage which has a constant output of 100 volts at all frequencies. Calculate, the resonant frequency, the quality factor and the bandwidth of the circuit, the circuit current at resonance and current magnification.

UNIT-III
5. Determine h parameters for the two port network shown below

OR
6. When do we say that, an electric network is symmetrical? What are the conditions for an electrical network to be symmetrical in terms of (i) y-parameters; (ii) z-parameters; (iii) h-parameters

UNIT-IV

7. How the efficiency of DC machine can be predetermined by using a swinburn's test with circuit diagram and give its advantages and disadvantages.

OR

8. a) What is the function of commutator in a dc machines?
b) A 440 V dc shunt motor takes a current of 3 A at no load. The armature resistance including brushes is 0.3 and the field current is 1 A . Calculate the output and efficiency when the input current is 20 A .

UNIT-V

9. a) Write the principle of Induction motor.
b) Explain with the help of suitable diagram how the rotating magnetic field is produced in a three phase motor?

OR

10. Describe the method of calculating the regulation and efficiency of single phase transformer by open circuit and short circuit test.
\square

Code: 19A431T

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Electronic Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks
UNIT-I1. a) Compare various coupling schemes used in amplifiers.7M
b) Explain cascode amplifier operation with neat diagrams and mention its uses. 7M
OR2. a) Draw the equivalent circuit of a CE amplifier using Millers theorem. What is the upper$3-\mathrm{dB}$ frequency of such circuit?7M
b) With a neat diagram, explain in detail about the operation of direct and transformer coupled amplifiers 7M
UNIT-II
3. a) Draw the hybrid -pi model of BJT. Explain the circuit elements in this model. 7M
b) Explain the frequency response of amplifier at Low, Mid and High frequencies 7M
OR
4. a) With hybrid π equivalent circuit, derive the expressions for trans conductance. 7M
b) Derive the expression of Gain Bandwidth Product. 7M
UNIT-III
5. a) State and explain Barkhausen's criteria. 4M
b) Derive the expression for frequency of oscillations of RC phase shift oscillator. 10M
OR
6. a) Explain the working principle of crystal oscillator. 7M
b) In a transistorized Hartley oscillator the two inductances are 2 mH and $2 \mu \mathrm{H}$. if the frequency changed from 950 kHz to 1050 KHz , calculate the change in capacitor. 7M
UNIT-IV
7. a) Classify the different types of power amplifiers and explain them briefly. 4M
b) Analyze the operation of Series-Fed class A power amplifier and derive the expression for efficiency. 10M
OR
8. a) Derive the expression for the efficiency push pull class-B power amplifier. 10M
b) Define cross over distortion. And how to overcome it? 4M
UNIT-V
9. a) Explain Advantages, disadvantages and applications of tuned amplifiers 7M
b) Give the classification of large signal amplifiers 7M
OR
10. a) Derive the maximum efficiency of a transformer coupled class A Power amplifier. 7M
b) Explain class B push-pull amplifier operation with neat diagrams. 7M

