ſ	ode: 19AC34T	R-1	9	
Ŭ	Il B.Tech. I Semester Supplementary Examinations Nov/Dec	: 2022		
	Life Sciences for Engineers			
	(Common to All Branches)			
		ime: 3		
F	Answer any five full questions by choosing one question from each unit (5x1)	4 = 70 N	narks j	
		Marks	со	Blooms Level
	UNIT–I			
	Describe the types of cells and write the differences between prokaryotes			
	and eukaryotes cells?	14M	1	2
	OR			
a)	Explain the differences between Plant cell and Animal cell?	7M	1	2
b)	Describe is mitochondrion? Write their structure and important functions			
	and draw the labelled diagram?	7M	1	
	UNIT–II			
	Define the proteins? Write the structure and functions of proteins?	14M	2	
	OR			
	Define the antibodies and Write the types and functions of antibodies?	14M	2	
			•	,
	Explain the Glycolysis pathway and importance?	14M	3	2
	OR		•	
	Discuss the Clavin cycle/C ₃ cycle?	14M	3	2
-)			0	
a)	Explain the three laws of inheritance with examples?	7M	3	2
b)	Briefly describe the transcription and translation?	7M	3	2
	OR			
	Explain the Process of DNA Replication in prokaryotic and eukaryotic animals?	14M	4	4
-)			-	
a)	Write short notes on restriction enzymes?	7M	5	
b)	Explain the Importance of DNA Cloning?	7M	5	2
- `	OR		-	
a)	Explain the applications of transgenic animals? Discuss the tools of Recombinant DNA Technology?	7M 7M	5 5	2
b)				

OR

- 6. Find the half range Cosine and Sine series for the function f(x) = x in the range 0 < x < f 14M cos L1
- 7. Using the method of separation of variables, solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ 14M co4 L3

OR

8. A string is stretched and fastened to two points at a distance "*l*"apart. Motion is started by displacing the string in the form $y = k(lx - x^2)$ from which it is released at time t = 0. Find the displacement at any point on the string at a distance *x* from one end at time t. 14M co4 L3

9. a) Prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| \operatorname{Re} al \ f(z) \right|^2 = 2 \left| f'(z) \right|^2$$

where $w = f(z)$ is analytic.

b) Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.

OR

10. Evaluate
$$\int_{c} (y^2 + 2xy) dx + (x^2 - 2xy) dy$$
 where c is

the boundary of the region by $y = x^2$ and $x = y^2$. 14M CO5 L5 ***END***

4M CO5 L1

	ŀ	Hall Ticket Number :			l
	С	ode: 19A432T	R-1		
	Ŭ	II B.Tech. I Semester Supplementary Examinations Nov/De	c 2022		
		Random Variables Theory			
		(Electronics and Communication Engineering)			
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x *********	Time: 3 4 = 70 <i> </i>		
			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Define probability. Write and explain the axioms of probability.	7M	CO1	L2
	b)	An experiment consists of observing the sum of the numbers showing up when two dice are thrown. If only three events are of interest represented by A= {sum=7}, B = {8 <sum<=11} and="" c="{10<sum}." calculate="" of<br="" probabilities="" the="">the events by developing the mathematical model for the given experiment.</sum<=11}>		CO1	L3
2	a)	OR Explain the concept of Total probability.	7M	CO1	L2
۷.	a) b)	A Single card is drawn from the deck of 52 cards, what is the probability of	7 111	001	LZ
	0)	the following			
		i. Card will be a 5 or smaller?			
		ii. Card is less than 5.			
		iii. Find conditional probability of i / ii	7M	CO1	L3
		UNIT-II			
3.	a)	Define Random variable. List and define the types of random variable.	4M	CO2	L2
	b)	Define probability density function. List & prove their properties.	10M	CO2	L2
		OR			
4.		Define Gaussian density functions and derive the Gaussian distribution function.	14M	CO2	L2
5.	a)	Define an expected value of a random function g(X).	6M	CO3	L3
	b)	A random X is uniformly distributed on the interval (-5, 15). Another random			
		variable $Y = e^{-x/5}$ is formed. Find E[Y].	8M	CO3	L3
		OR			
6.		Find the variance of a random variable X, skew and co-efficient of skewness for			
		the uniform density function.	14M	CO3	L3
_					
7.		Define Joint probability density function and Explain the properties of joint	4 4 5 4	\mathbf{c}	10
		distribution function.	14M	CO3	L2
0		OR Define and obtain the equations for joint moments about the origin and joint			
8.		Define and obtain the equations for joint moments about the origin and joint central moments.	14M	CO3	L3
			1 1101	000	LU
9.		Define auto correlation function and prove their properties.	14M	CO5	L2
υ.		OR	1 7111	000	ĽĽ
10.	a)	State some useful classifications of Random Processes.	7M	CO4	L2
	b)	List all the properties of covariance function.	7M	CO5	L2
	~)		, 111	000	ĽĽ

Hall	Tic	ket Number :	
Cod	or 1	9A434T	9
CUU		B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
		Signals & Systems	
		(Electronics and Communication Engineering)	
-		1 Time: 3 any five full questions by choosing one question from each unit (5x14 = 70 M ********	
		UNIT–I	Marks
1.		State and prove the properties of Fourier series	14M
		OR	
2.	a)	Explain the various operations on signals	7M
	b)	Write the Classification of systems based on certain properties.	7M
		UNIT–II	
3.	,	What is the Significance of Hilbert Transform? Explain	7M
	b)	Obtain the Fourier transform of Signum function and sketch its phase spectrum. OR	7M
4.	a)	Find the Fourier transform of $x(t) = u(2t)$, where $u(t)$ is the unit step function	7M
	b)	State and prove Time Convolution property of Fourier Transform.	7M
F		UNIT-III	714
5.	a) b)	State and derive the relationship between bandwidth and rise time. What are the characteristics of ideal LPF and HPF	7M 7M
	0)	OR	7 101
6.	a)	Differentiate LTI system with LTV system.	7M
	b)	Find the impulse response of series RC limit. Explain the difference between	
	,	causal and non-causal systems.	7M
		UNIT–IV	
7.		Compute & plot the convolution $y(t)$ of the given signals:	4 4 1 4
		(i) $x(t) = u(t-3) - u(t-5)$, $h(t) = u(t)$. (ii) $x(t) = u(t)$, $h(t) = u(t)$.	14M
8	a)	OR State and prove Time convolution property	7M
0.	a) b)	State and prove any four properties of Auto correlation function	7M
	0)		7101
		UNIT–V	
9.		Find the inverse z-transform of $x(z) = (z^2 + z) / (z-1)(z-3)$, ROC: $z > 3$.	
		Using (i) Partial fraction method, (ii) Residue method	14M
		OR	
10.	a)	Explain the constraints on ROC for various classes of signals	7M
	b)	State and prove the following properties of z-transform.	
		i) Time shifting ii) Time reversal iii) Differentiation iv) Scaling in z-domain	7M

	F	All Ticket Number :	
	C	ode: 19A433T	
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
		Digital Design	
		(Electronics and Communication Engineering)	
		Max. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
			Marks
1	2)	UNIT-I	714
١.	a) b)	What is the difference between 1's and 2's compliments? Give one example. Write a short note on logic gates and their truth tables	7M 7M
	D)	OR	7 111
2.		Determine the prime implicants of the following function and verify using k-map. Y	
۷.		(P,Q,R,S) = (3,4,5,7,9,13,14,15)	14M
3.	a)	Implement the following function using NAND gates $F = wx + x y (z + w)$	9M
	b)	Convert the given expression in standard POS form	
		F1(A,B,C,D) = (A+B)(B+C)(A+C) & $F2(P,Q,R) = (P+Q')(P+R)$	5M
		OR	
4.	a)	Realize the following expressions using NAND and NOR logic separately	
		Y = PQ' + QS + Q'RS'	7M
	b)	Using K-map method, simplify the following 4-variable function	
		F(A,B,C,D) = (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)	7M
5	a)	UNIT-III Implement a full adder with two half adders and one OR gate and explain the operation of	
5.	a)	full adder with the help of truth table	7M
	b)	Explain 3 x 8 decoder with the help of truth table	7M
	,	OR	
6.	a)	Realize full adder using two level basic gates.	7M
	b)	With a neat diagram explain operation of 2-bit magnitude comparator	7M
		UNIT-IV	
7.	a)	With a neat diagrams explain the operation of Ring counter	7M
	b)	Draw the logic diagram of LATCH using NOR and NAND gates	7M
		OR	
8.	a)	Compare synchronous and asynchronous sequential circuits.	6M
	b)	Draw and explain the working of 3-bit synchronous up/down counter.	8M
_		UNIT-V	
9.	a)	Design a sequence detector to detect the binary sequence 1111 using T Flip-flop	7M
	b)	Draw a ASM chart for a 2-bit binary counter having one enable line E such that: $E=1$ (counting enabled) $E = 0$ (counting disabled)	7M
		(counting enabled) $E = 0$ (counting disabled) OR	<i>i</i> IVI
10.	a)	Discuss about the capabilities and limitations of FSM	7M
	b)	Compare Mealy and Moore machines	7M
)	***	

	Il B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
	Electrical Circuits and Technology	
	(Electronics and Communication Engineering)	
,	Max. Marks: 70 Time: 3 Hours	
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		Mark
	UNIT-I	man
	Explain Transient Response of RL Series Circuits for DC Excitation using differential	
	equation approach	14
	OR	
	Explain source transformation and how can it be used to convert (i) a practical voltage	
	source into a practical current source; (ii) a practical current source into a practical voltage	
	source.	14
	UNIT–II	
	Define Average & RMS Value, Form Factor, Peak Factor, Peak Value, Peak to Peak Value	141
	OR	
	A parallel resonance network consisting of a resistor of 60 , a capacitor of 120uF and an	
	inductor of 200mH is connected across a sinusoidal supply voltage which has a constant	
	output of 100 volts at all frequencies. Calculate, the resonant frequency, the quality factor	
	and the bandwidth of the circuit, the circuit current at resonance and current magnification.	
	f	
	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
	V _s = 100V	
	V _s = 100V	
	$= R = 60\Omega L = 200 \text{mH} C = 120 \text{uF}$	14
	UNIT-III	141
	Determine h parameters for the two port network shown below $x = \frac{5\Omega}{r} = \frac{5\Omega}{r}$	
	V_1 $5\Omega \ge V_2$	
	x ⁻ y	14
	OR	
	When do we say that, an electric network is symmetrical? What are the conditions for an	
	electrical network to be symmetrical in terms of (i) y-parameters; (ii) z-parameters;	
	(iii) h-parameters	14
	UNIT–IV	
	How the efficiency of DC machine can be predetermined by using a swinburn's test with	
	circuit diagram and give its advantages and disadvantages.	141
、	OR	
a)	What is the function of commutator in a dc machines?	41
b)	A 440 V dc shunt motor takes a current of 3 A at no load. The armature resistance including brushes is 0.3 and the field current is 1 A. Calculate the output and efficiency when the	
	input current is 20 A.	10
	UNIT-V	
a)	Write the principle of Induction motor.	41
a) b)	Explain with the help of suitable diagram how the rotating magnetic field is produced in a	-11
U)	three phase motor?	10
	OR	
	Describe the method of calculating the regulation and efficiency of single phase transformer	
	by open circuit and short circuit test.	14

	Page 1 of	

	На	all Ticket Number :													
														R-19	
	Co	de: 19A431T II B.Tech. I Sei	mes	ter S	auS	olen	nen	tarv	Exa	min	atio	ns N	lov/C	Dec 2022	
								сĆ					·		
			ectr	onic	s an	d Co	omn	nuni	catio	on Er	ngin	eerir	ng)		
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********															
UNIT-I											Marks				
1.	a)	Compare various co	nilaud	na sc	hem	es us			plifie	rs.					7M
	b) Explain cascode amplifier operation with neat diagrams and mention its uses.											7M			
OR															
2.	a)	Draw the equivalen				CE a	mplif	fier u	sing	Mille	ers th	neore	em. W	hat is the upper	
	ь)	3-dB frequency of s				dote		out	tha	opor	otion	of	liroot	and transformer	7M
	b)	With a neat diagra coupled amplifiers	m, e	xpia	Iri iri	uela	an ar	Jour	line	opera	alion	01 0	mect		7M
							UN	IIT–II							
3.	a)	Draw the hybridpi	mod	el of	BJT	. Exp	lain	the c	ircuit	elen	nents	s in th	nis mo	del.	7M
	b)	Explain the frequent	cy re	spon	ise o	fam	olifie	r at L	ow, l	Mid a	nd F	ligh f	reque	ncies	7M
								OR							
4.	a) ⊾)	With hybrid equiva						•		ns fo	or trai	ns co	onduct	ance.	7M
	b)	Derive the expression	on of	Gali	n Bar	nawio		roau IT–II							7M
5.	a)	State and explain E	Barkh	ause	en's d	riteri	_								4M
0.	b)	Derive the expression						llatio	ns of	RC	phas	e shi	ift osci	illator.	10M
	,	·			•	,		OR			•				
6.	a)	Explain the working	prine	ciple	of cr	ystal	osci	llator							7M
	b)	In a transistorized		•										•	
		frequency changed	trom	950	KHZ	to 10		(HZ, IT–I\		llate	the c	cnang	ge in c	apacitor.	7M
7	a)	Classify the differen	t tvo	es of	now	er ar				xolai	n the	em br	ieflv		4M
	b)	Analyze the operati	•••		•		•			•			•	e the expression	
	-,	for efficiency.						ľ							10M
								OR							
8.	a)	Derive the expression						•			pow	er an	nplifier	r.	10M
b) Define cross over distortion. And how to overcome it?											4M				
0	2)	Explain Advantages	dia	adva	ntaa			IT-V		of t	unod		lifiore		7M
ອ.	a) b)	Explain Advantages Give the classification			•		•	•			JUGU	amp	,CI 2		71vi 7M
	OR														
10.	a)	Derive the maximum	n effi	ciend	cy of	a tra	nsfo	rmer	coup	oled o	class	A Po	ower a	amplifier.	7M
	b)	Explain class B pus	h-pul	ll am	plifie	r ope	eratio	on wit	h ne	at dia	agrar	ns.			7M
							*	**							
