	F	Iall Ticket Number :			
	Co	de: 20A133T	R-20		
	00	II B.Tech. I Semester Supplementary Examinations June 2024			
		Fluid Mechanics and Hydraulic Engineering			
	Mo	(Civil Engineering) ax. Marks: 70 Time	e: 3 Ho	ours	
	No	te: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks.			
		 Answer ALL the questions in Part-A and Part-B PART-A 			
		(Compulsory question)			
1.	Ans	swer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$		CO	BL
,		hat is difference between hydrostatic pressure and centre of pressu	re?	1	1
,		te the typical characteristics of velocity potential function?		2	1
,		at is proportional Weir?		3	1
,		te the practical use of Moody's diagram?		4	1
e)	vvn	at is necessity of Priming of a Centrifugal Pump before stating? PART-B		5	1
		Answer five questions by choosing one question from each unit ($5 \times 12 = 60 \text{ M}$	arks)		
			Marks	CO	BL
-		UNIT-I			
2.	a)		<u> </u>		-
	b)	(i) Viscosity (ii) Surface Tension (iii) Compressibility	6M	1	2
	b)	An oil film of thickness 1.5 mm is used for lubrication between a square plate of size $0.9m \times 0.9m$ and an inclined plane having			
		an angle of inclination 30° . The weight of the square plate is			
		400N, and it slides down the plane with a uniform velocity of			
		0.2m/s. Find the dynamic viscosity of the oil and kinematic			
		viscosity of oil.	6M	1	3
		OR			
3.	a)	What is pressure at a point? Derive a methodical expression for			
		Law of Hydrostatic pressure distribution?	6M	1	6
	b)	Find the volume of the water displaced and the position of center			
		of buoyancy for a wooden block of width 2.5 m and depth 1.5 m			
		when it floats in water horizontally. The density of the wooden block is 650 kg/m3 and its length is 6 m.	6M	1	3
			OW	I	5
4.	a)	Explain the different types of flow with practical examples	6M	2	2
	b)	If the velocity potential function $= 4x(3y-4)$, determine the	••••	_	-
	,	velocity at (4,6,0). Determine the stream function at the same			
		point.	6M	2	3
		OR			
5.	a)	What is flow net? Explain the various methods of flow net construction	6M	0	0
	b)	Examine whether flows are possible or not based continuity	OIVI	2	2
	~/	equation.			
		(i) $U = x+y-z$, $V = 2x+y+8z$, $W = 3x+2y-2z$	~ 4		
		(ii) $U = x+y+z$, $V = 2x=2y=2z$, $W = 3x-4y-5z$	6M	2	3

		UNIT-III			
6.	a)	Derive Bernoulli's equation from fundamentals	6M	3	6
	b)	A tapered pipe of diameters 300 mm and 200 mm is laid parallel			
		to the ground. The pressure intensity at the two ends are 250kPa			
		and 150 kPa respectively while a discharge of 50 L/s is flowing			
		through the pipe. Compute the total energy at each of the two			
		sections. Mention the direction of fluid flow in the pipe and justify	6M	3	3
_		OR			
7.	a)	Differentiate between (i) weir and notch (ii) submerged weir and			
		broad crested weir	6M	3	2
	b)	Determine the maximum discharge over a broad crested weir			
		built across a rectangular channel 4 m when the head of water			
		above the sill of the weir is 75 cm. Determine also head causing			
		flow. Take $C_d = 0.61$	6M	3	3
~	、	UNIT-IV			
8.	a)	Derive Darcy-weisbach equation. Mention its assumptions	6M	4	6
	b)	Find the head loss due to friction in a pipe of diameter 300 mm			
		and length 50 m, through which water is flowing at a velocity of			
		3 m/s using (i) Darcy-Weisbach formula (ii) Chezy's Formula for	614		~
		which C=60. Take kinematic viscosity (v) for water = 0.01 stoke.	6M	4	3
0	c)	OR Differentiate between (i) Hydraulie gradient line and Total energy			
Э.	a)	Differentiate between (i) Hydraulic gradient line and Total energy line (ii) Hydrodynamically smooth and rough pipes	6M	Λ	0
	ト)			4	2
	b)	Pipes of 50 cm diameter, 1800 m length, 40 cm diameter, 1200m length and 30 cm diameter, 600 m length are connected in series			
		(i) if these pipes are to be replaced by an equivalent pipe of 40cm			
		diameter, What would be its length? (ii)What would be the			
		diameter of the equivalent pipe of 3600 m length?	6M	4	3
			2	•	J
10.	a)		6M	5	2
	b)	A pelton wheel is receiving water from a penstock with a gross		-	_
		head of 510 m. One -third of gross head is lost in friction in the			
		penstock. The rate of flow through the nozzle fitted at the end of			
		penstock is 2.2 m ³ /s. The angle of deflection of the jet is 165° .			
		Determine the power given by water to the runner and hydraulic			
		efficiency of the pelton wheel. Take $C_v = 1.0$ and speed ratio=0.45	6M	5	3
		OR			
11.	a)	Explain the working principle of centrifugal pump with neat			
		sketches	6M	5	2
	b)	A centrifugal pump is to be discharge 0.118 m ³ /s at a speed of			
		1450 rpm against a head of 25 m. The impeller diameter is			
		250mm, its width at the outlet is 50 mm and manometric			
		efficiency is 75%. Determine the vane angle at the outer			
		periphery of the impeller.	6M	5	3
		*** End ***			

Page **2** of **2**

Code: 20A133T

UNIT-III

Hall Ticket Number :			
	R-20		
Code: 20AC36T II B.Tech. I Semester Supplementary Examinations June : Managerial Economics and Financial Analysis (Common to CE & ECE)	2024		
Max. Marks: 70	Time: 3 H	ours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Computation)			
(Compulsory question)	M) co	BL	
1. Answer all the following short answer questions $(5 \times 2 = 10)$			
 a) What is Law of demand? b) Cast values profit analysis 	1	L1 L1	
 b) Cost – volume- profit analysis. c) Define departmental organizations 	2		
 c) Define departmental organizations. d) Lease of Accounting rate of return 	3		
 d) Uses of Accounting rate of return. a) Write a note on Debt Equity ratio 	4	L1	
e) Write a note on Debt-Equity ratio. РАRТ-В	5	LI	
Answer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Mark	s)	
	Marks	-	BL
UNIT-I			
2. a) Define Managerial Economics? Explain its scope.	6M	1	L2
 b) Explain the significance of Elasticity of Demand. OR 	6M	1	L2
 What is Law of demand? Explain the difference between demand schedule & demand curve. UNIT-II 	12M	1	L3
4. a) Illustrate Cob-Douglas Production function	6M	2	L3
 b) Explain the managerial uses of Break-even analysis. OR 	6M	2	L2
 5. a) Explain cost output relationship in long-run. b) From the following particulars Calculate BEP. Fixed factory overheads cost – Rs. 60000 Fixed selling overheads cost – Rs. 12000 Variable manufacturing cost per unit – Rs. 12 	6M	2	L2
 Variable selling cost per unit – Rs. 3 Selling price per unit – Rs. 24. UNIT-III Explain how the price is determined in case of perfect competition. Illustrate. 	6M t 12M	3	L3 L2

OR

7. What is monopolistic competition? Explain the determination of equilibrium output and price of firm under monopolistic competition.

12M 3 L3

UNIT-IV

8. What do you mean by Capital Budgeting? Explain different techniques of Capital Budgeting.

12M 4 L2

OR

9. A company has an investment opportunity costing Rs.40,000 with the following expected net cash inflows:

Year	Cash Inflows
real	(Rs.)
1	7,000
2	7,000
6	8,000
7	10,000

Year	Cash Inflows (Rs.)
8	15,000
9	10,000
10	4,000

Determine the following:

- a) Payback period.
- b) NPV (10% discount rate)
- c) Profitability Index.

UNIT-V

12M 4 L4

10. Given,

Gross profit ratio 20%

EPS 2/-Rs,

no of shares 25000@ 10/-Rs each

profit 25% of share capital.

Current ratio3:1 and

Acid test ratio1.5:1

Quick Assets 30,000/-

inventory turnover ratio10 times,

operating ratio 90%,

closing Stock less by Rs 6000/- in opening stock

find out

i) Current Liabilities ii) Quick Liabilities iii) Current Assets

iv) Opening Stock v) Closing Stock.

12M 5 L4

OR

 From the following Trail Balance of Maanas Prepare trading & Profit and loss a/c for the year ended 31st December 2020 and Blanace sheet as on that date.

Debit Balances	Rs.	Credit Balances	Rs.
Purchases	90,000	Sales	1,45,000
Returns	2,000	Returns	2,000
Cash in Hand	5,000	Commission	3,000
Cash at Bank	8,000	Capital	56,000
Debtors	20,500	Creditors	40,000
Furniture	13,000	Total	246000
Machinery	25,000		
Opening stock	15,000		
Rent	4,500		
Wages	11,000		
Insurance	1,000		
Carriage outwards	2,000		
Travelling			
expenses	1,000	_	
Bills receivable	34,000		
Salaries	8,000		
Drawings	6,000		
Total	246000		

Adjustments:

a) Closing stock Rs. 32,000

12M 5 L3

C									R-20		
	Code: 20AC31T	ch.ISem	actar S	unnlem	entary	Evam	ination	L Anna (2024		
		ial Differ									
				Common							
١	Max. Marks: 70		·			,			Time: 3 H	lours	
Ν	lote: 1. Questior	Daner cor	ncists of		***** c /Dart_/	A and D	art_B)				
T	2. In Part-A,	•		•	•		ai t-Dj				
	3. Answer A	•				:-В					
				<u>PA</u>	RT-A						
			(0	Compulso	ory ques	stion)					
1.	Answer all the fe	-		•	-	5 X 2 =	,			CO B	L
a)			ion meth	nod and sp	pecify its	s order o	of conver	gence.		:01 L	
b)									C	:02 L	2
c)	Evaluate $\int_{0.6}^{2.0} y d$	dx by usin	g trapez	oidal rule	to the fo	ollowing	table				
	X	0.6 8	1.0) 1.2	1.4	1.6	1.8	20			
	У	1.23 1.5	8 2.0	3 4.32	6.25	8.38	10.23	12.45	C	:O3 L	5
d)	Write the formu	-								04 L	1
e)	Write One-dime	ensional He	at flow e	•		ensiona	al Heat fl	ow equat	tion. C	:05 L	1
	Answer <i>five</i> qu	lestions h	, choos		<u>RT-B</u>	from e	ach unit	(5 x 12	– 60 Mar	(s)	
	Answei mie qu		01003		laconor					CO	BL
				UN	IIT-I						
. a)	By using the										
	equation $\sin x =$	1/x, that I	ies betv	v = 0		A F (acurad i				
		utationa un			and x=	1.5 (me	asuleu i	n radians	,		1.2
b)		utations up	to the 7	th stage		· ·			6N		L3
b)	Find the root of	•	to the 7	x^{th} stage x = 3x - 1	L by usi	· ·			6N	I CO1 I CO1	
	Find the root of	the equation	to the 7 on cosx	x = 3x - 1	L by usi DR	ng Itera	tion meth	nod	6N 6N		
	Find the root of Find a real root	the equation	to the 7 on cosx ation x l o	x = 3x - 1	L by usi DR	ng Itera	tion meth	nod	6N 6N	I CO1	L4
. a)	Find the root of Find a real root correct to four d	the equation of the equa lecimal place	to the 7 on <i>cos x</i> ation <i>x</i> lo ces.	x = 3x - 1 x = 3x - 1 x = 1	L by usi DR 1.2 by u	ng Itera sing reg	tion meth Jula – fals	iod si methoo	6N 6N d 6N	I CO1	L4
	Find the root of Find a real root correct to four d Using Newton-F	the equation of the equa lecimal place Raphson m	to the 7 on <i>cos x</i> ation <i>x</i> lo ces.	x = 3x - 1 x = 3x - 1 x = 1	L by usi DR 1.2 by u	ng Itera sing reg	tion meth Jula – fals	iod si methoo	6N 6N d 6N ct	I CO1	L4 L4
. a)	Find the root of Find a real root correct to four d	the equation of the equa lecimal place Raphson m	to the 7 on <i>cos x</i> ation <i>x</i> lo ces.	x^{th} stage x = 3x - 2 x = 2 x = 2 x = 2 x = 2 x = 2 x = 2	L by usi DR 1.2 by u of the ed	ng Itera sing reg	tion meth Jula – fals	iod si methoo	6N 6N d 6N ct	I CO1	L4 L4
. a)	Find the root of Find a real root correct to four d Using Newton-F	the equation of the equa lecimal place Raphson m I places.	to the 7 on <i>cosx</i> ation <i>x</i> lo ces. ethod, fi	x = 3x - 1 x = 3x - 1 x = 1	L by usi DR 1.2 by u of the ed IT-II	ng Itera sing reg	tion meth Jula – fals	iod si methoo	6N 6N d 6N ct	I CO1	L4 L4
a) b)	Find the root of Find a real root correct to four d Using Newton-F to three decimal Find the value of X	the equation of the equa- lecimal place Raphson m I places. of $f(42)$ to 20	to the 7 on cosx ation x l ces. ethod, fi the follo 25	The stage $\mathbf{x} = \mathbf{3x} - 1$ $\mathbf{x} = \mathbf{3x}$ $\mathbf{x} = 3$	L by usi DR 1.2 by u of the ed IT-II a 35	ng Itera sing reg quation	tion meth Jula – fals $x^4 - x =$	iod si methoo	6M 6M d 6M ct 6M	I CO1 I CO1 I CO1	L4 L4 L3
a) b)	Find the root of Find a real root correct to four d Using Newton-F to three decimal Find the value c	the equation of the equa- lecimal place Raphson m I places.	to the 7 on cosx ation x l a ces. ethod, fi the follo	The stage x = 3x - 1 x = 3 x = 1 x =	L by usi DR 1.2 by u of the eq IT-II 3 35 260	ng Itera sing reg quation 40 231	tion meth Jula – fals $x^4 - x =$ 45 204	iod si method 1 0 corred	6N 6N d 6N ct 6N	I CO1	L4 L4 L3
a) b) a)	Find the root of Find a real root correct to four d Using Newton-F to three decimal Find the value of X f(x)	the equation of the equa- lecimal place Raphson m I places. of $f(42)$ to 20 354	to the 7 on cos x ation x la ces. ethod, fi the follo 25 332	The stage = 3x - 1 $x = 1$	L by usi DR 1.2 by u of the eq IT-II 3 35 260	ng Itera sing reg quation 40 231	tion meth Jula – fals $x^4 - x =$ 45 204	iod si method 1 0 corred	6N 6N d 6N ct 6N	I CO1 I CO1 I CO1	L4 L4 L3
a) b)	Find the root of Find a real root correct to four d Using Newton-F to three decimal Find the value of X f(x) Using Lagrange	the equation of the equa- lecimal place Raphson m I places. of $f(42)$ to 20 354 e's formula,	to the 7 on cos x ation x la ces. ethod, fi the follo 25 332	The stage = 3x - 1 $x = 1$	L by usi DR 1.2 by u of the eq IT-II 3 35 260	ng Itera sing reg quation 40 231	tion meth Jula – fals $x^4 - x =$	iod si method 1 0 corred	6N 6N 6N 6N ct 6N 6N	I CO1 I CO1 I CO1	L4 L3 L4
. a) b) . a)	Find the root of Find a real root correct to four d Using Newton-F to three decimal Find the value of X f(x)	the equation of the equa- lecimal place Raphson m I places. of $f(42)$ to 20 354 e's formula,	to the 7 on cos x ation x la ces. ethod, fi the follo 25 332	The stage $= 3x - 1$ C $DB_{10} = 2$ C $DB_{10} = 2$ C	L by usi DR 1.2 by u of the eq IT-II 3 35 260	ng Itera sing reg quation 40 231	tion meth Jula – fals $x^4 - x =$ 45 204	iod si method 1 0 corred	6N 6N 6N 6N ct 6N 6N	I CO1 I CO1 I CO1	L4 L3 L4

6.

7.

8.

9.

10.

11.

. a))	Using Newton's I	backward formul	a, find the	value of	f (2.0), it	-			
		X	1	1.4		1.8	2.2			
		f(x)	3.49	4.82		5.96	6.5	6M	CO2	L3
b))	Find the relation	between E and	-	IIT-III	7		6M	CO2	L4
-		Given that	4							
		X	1 1.2	1.4	1.6	1.8	2			
		У	2.72 3.32	4.06	4.95	6.05	7.39			
		Find $\frac{dy}{dx}$ and $\frac{dy}{dx}$	$\frac{d^2 y}{d^2 x}$ at x=1.1 and	x=1.2				4014	000	
		dx d	dx^2					12M	CO3	L4
					DR					
. a))	Use the Trapezo	idal rule to estim	ate $\int x \sec x$	<i>x dx</i> tak	ina 8 inte	rvals.			
								6M	CO3	L3
b))	A river is 80 feet	wide; the depth	is d in feet	at a dis	tance x f	oot from one ban	k		
		is given by the fo	ollowing table, fin	d approxin	nately th	e area o	f cross-section			
		x 0	0.8 1.0 3	30 40	50	60	70 80			
		у О	4 7	9 12	15	14	8 3	6M	CO3	L4
				UN	IIT-IV]				
		Employ the Taylo					ue of y at x=1.1,			
		x=1.2 for the diffe	erential equation	$\frac{dy}{dt} = \log xy$	v, v(1) = 2	2				
								12M	CO4	L4
					OR					
. a)		Using Picard's pi								
		x = 2 up to 5 th ap	proximation of $\frac{d}{d}$	$\frac{dy}{dy} = 2x - y$, such t	that y (0)	=3	C M	004	10
ل م								6M	CO4	L3
D))	Apply Runge-kut	$\frac{dv}{dv}$	ietnoa, inc	i an app	xi at	value of y when			
		x = 0.1 Given th	hat $\frac{dy}{dx} = x + y^2$, s	such that y	= 1 whe	$n_x = 0$		6M	CO4	L4
				UN	IIT-V]				
		a characteria de la contra c	$\partial^2 u$	$\partial^2 u$	0	-				
-		solve the Laplace	e equation $\frac{\partial x^2}{\partial x^2}$ +	$-\frac{\partial y^2}{\partial y^2} = 0 =$	=0 subje	cted to tr	e conditions			
				1 ()	. (nf	(x)				
		u(0, y) = u(l, y)	=u(x,0)=0 and	d u(x,a) =	$=\sin\left(\frac{l}{l}\right)$	_)		12M	CO5	L3
				C	DR	-				
		A tightly stretch	ed string with fi	ixed end p	ooints x	=0 and	x=l is initially in	а		
				、 .			-			
		position given by	$y - y_0 \sin \left(\frac{l}{l}\right)$	$\int dx = \frac{1}{2} \frac{1}{$	eleased	nomies		лт,		
		find the displace	ment $y(x,t)$					12M	CO5	L4
				***	End ***					

	Hall Ticket Number :			
L	Code: 20A132T	R-20		
	II B.Tech. I Semester Supplementary Examinations June 20)24		
	Strength of Materials			
	(Civil Engineering) Max. Marks: 70	ime: 3 Ho	ours	

	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
1 1	(Compulsory question)		~~	
	Inswer <i>all</i> the following short answer questions $(5 \times 2 = 10M)$		CO	BL
	Vhat is meant by resilience?		1	1
	Enlist the types of beams and draw the neat sketches showing the eactions.	support	~	4
		Various	2	1
	Vrite the equation of simple bending and mention the names erms in the equation.	vanous	3	1
	Vrite the equations for slope and deflection of simply supported	d beam	Ū	•
	arrying a central point load 'W' with a neat sketch.		4	1
e) V	Vrite the equations pertaining to maximum principal stress theory.		5	1
-	PART-B			
	Answer five questions by choosing one question from each unit (5 x 12 = 60			
		Marks	CO	BL
0	UNIT-I			
2.	A Steel bar of 2 cm diameter and 20 cm length was subjected to a tension test. On applying a load of 20KN, the extension			
	was found to be 0.0054 cm and the change in diameter was			
	0.00022 cm .Calculate the values of (i) Modulus of Elasticity			
	(ii) Poisson's ratio and (iii) Change in Volume.	12M	1	3
	OR			
3.	An aluminum rod 22 mm diameter passes through a steel tube	e		
	of 25 mm internal diameter and 3 mm thick. The rod and tube	-		
	are fixed at a temperature 180°C. Find the stress in the rod δ			•
	tube when the temperature falls to 60°C.	12M	1	3
4.	UNIT-II A simply supported beam of spap 4m carries an LIDL of 2 t/m			
4.	A simply supported beam of span 4m carries an UDL of 2 t/m over a length of 1.5m and a point load 2 t at a distance 3 m from			
	left support. The beam is also subjected to anticlockwise couple			
	of 3 t-m at a distance 2m from left support. Draw SFD & BMD.	12M	2	3
	OR			

12M

12M

12M

12M

12M

12M

2

3

3

4

4

5

5

3

3

3

3

3

3

3

An overhanging beam length 9 m, resting over two supports 6m apart at a distance of 1.5 m from left end. The beam carries a UDL of 20 kN/m over its entire length. Draw S.F and B.M diagrams and find out the position of contra flexure.

UNIT-III

 A cast iron beam is of T-Section. Flange width=100mm, Thickness if flange=20mm Web depth=80mm, Thickness of web=20mm. The beam carries UDL of 1.5 kN/m length on the entire span. Determine the maximum Tensile and Compressive stress.

OR

 The cross section of a joist is a T- section 120mm X 200mm X 12mm, with 120mm side horizontal. Sketch the shear stress distribution and hence find the maximum shear stress if it has to resist a shear force of 250KN.

UNIT-IV

8. A beam AB of span 6m span is simply supported at the ends and is loaded with a point load of 6 KN at 2m from left end A and a udl of 2 KN/m on the right half span. Determine maximum deflection and slope at end A. Take E=2x10⁵ N/mm² and I=2000cm⁴.

OR

Calculate the slope and deflection at the free end of the cantilever of length 3m carrying two point loads of 20KN each acting at free end and 1.5m from the free end. Take E=2x10⁵N/mm² and I=10. 8mm⁴.

UNIT-V

10. The stresses at a point in a bar are 200 N/mm² (tensile) and 100N/mm² (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of major stress. Also determine the maximum intensity of shear stress in the material at that point.

OR

11. Determine the resultant stress in magnitude and direction on a plane inclined at 600 to the axis of the major principal stress At a point in a strained material, the principal stresses are 100N/mm² tensile and 40 N/mm² compressive. What is the maximum intensity of shear stress in the material at that point?

	Hall Ticket Number :									r		
	Code: 20A131T		[_							R-20		
	II B.Tech. I Seme	ester	Sup	plen	nentar	νEx	ami	nati	ons J	une 2024		
			•	•	d Sur							
					nginee	-	-					
	Max. Marks: 70				C	•				Time: 3 Ho	urs	

	Note: 1. Question Paper con	sists c	oftw	o par	ts (Part	-A a	nd Pa	art-B				
	2. In Part-A, each quest	ion c	arrie	s Twc	o marks	5.						
	3. Answer ALL the ques	stions	in P a			rt-B						
					<u>ART-A</u>							
			(Coi	mpuls	ory que	stio	า)					
. Ar	nswer all the following short ar	nswer	que	stions	(5	X 2	= 10	(N			CO	I
W	hat is the principle of chain su	rveyin	g								1	
Wi	rite any two applications of co	ntours	6.								2	
Ex	plain the selection of triangula	ition s	tatio	ns.							3	
ele	instrument was set up at a evation of the top of the tower	was	35º4	5 , w	hereas	the a	angle			•	4	
wa	as 3º30 . Calculate the total he	ight c	of the	trans	missior	tow	er.					
W	hat are uses of total station su	rvey?									5	
				<u>P/</u>	ART-B							
	Answer five questions by	choo	sing	one	questic	on fr	om e	ach (unit ({	5 x 12 = 60 Marks)	
										Marks	СО	E

- 2. a) The bearings observed in traversing with a compass at a place where local attraction was suspected are given below:

Line	Fore Bearing	Back Bearing
AB	S45º30'E	N45º30'W
BC	S60º00'E	N60º40'W
CD	N03º20'E	S05º30'W
DA	S85º00'W	N83 ⁰ 30'E

At what stations do you suspect local attraction? Find the corrected bearings of the lines.

b) With a neat sketch elaborate the field procedure of In-direct method of ranging.

OR

3. a) A straight tunnel is to be run between two points 'A' and 'B' whose coordinates are given below:

Point	Coordinates					
Point	Ν	E				
A	0	0				
В	3014	256				
С	1764	1398				

It is desired to sink a shaft at 'D', the middle point of 'AB', but it is impossible to measure along 'AB' directly, so 'D' is to be fixed from 'C' a third know point. Calculate: (i) The coordinate of 'D'

- (ii) The length and bearing of 'CD'
- (iii) The angle 'ACD' given that the bearing of 'AC' is $38^{0}24$ 'E of N. 6M 3 1

6M

6M

3

2

1

1

	b)	A river is flowing from west to east. For determining the width of the river, two points P & Q are selected on the southern bank such that the distance PQ=180m. Point P is west wards. The bearing at a tree R on the northern bank are observed to be 40° and 340° respectively from P and Q, calculate the width of the river.	6M	1	3			
4.	a)	In running fly levels from a B.M. of RL 250.00m the following reading (in m) were obtained:						
		Backsight 1.315 2.035 1.980 2.625						
		Foresight 1.150 3.450 2.255						
		From the last position of the instrument, five pegs at 20m interval are to be set out						
		on a uniform rising gradient of 1in40. The first peg is to have a R.L. of 247.245m.						
		Work out the staff reading required for setting the tops of the pegs on the given gradient.	6M	2	3			
	b)	The following offsets were taken from a chain line to an irregular boundary line at	0101	2	0			
	0)	an interval of 10 m: 0, 2.50, 3.50, 5.00, 4.60, 3.20, 0 m. Compute the area between						
		the chain line, the irregular boundary line and the end of offsets by: i) mid ordinate						
		rule, ii) the average –ordinate rule, iii) the trapezoidal rule, iv) Simpson's rule.	6M	2	3			
	OR							
5.	a)	Discuss the effect of curvature and refraction in leveling. Derive an expression for curvature and refraction correction. Also provide for combined correction for curvature and refraction.	6M	2	2			
	b)	In a railway cutting, the side slopes are 1.5:1 and the surface of the ground has a uniform side slope of 1 in 10. The width at the formation level is 4.0 m. determine the volume of excavation between two points 50 m apart on the c/l with the depth of cutting at the first point being 6.0 m and at the second part being 8.0 m, while at a point halfway between them the depth is 6.5 m. If the points at which the depth of cutting is measured lie on a curve of radius 300 m, what will be the correction to						
		be applied?	6M	2	3			
		UNIT-III						
6.	a)	Derive an expression for finding out the height of the object when the base is not accessible using the concepts of trigonometric surveying. The height of the						
		thedolite at A is lower than that at B	6M	3	3			
	b)	Explain how horizontal angles are measured using theodolite instrument.	6M	3	2			
		OR						
7.	a)	The distance between two stations 'A' and 'B' was 3489.36m. Find out the reduce level of the station 'B' if the R.L. of 'A' was 950.75m. The following observations were recorded						
		Description Station 'A' Station 'B'						

Description	Station 'A'	Station 'B'
Height of instrument	1.433m	1.463m
Height of signal	4.572m	3.962m
Vertical angle	(+) 1 ⁰ 52'20" (to <i>'B'</i>)	(-)1 ⁰ 48'20" (to 'A')

R sin1" = 30.88 m

6M 3 4

b) Explain the importance of fundamental lines in a theodolite instrument. With neat sketch draw the fundamental lines of a theodolite instrument. What are their desired relationships?

6M

6M

2

4

4

Δ

3

4

UNIT–IV

- 8. a) The diaphragm of a theodolite in good adjustments is broken and replaced. What tests and adjustments must be carried out in order to bring the instrument in good working order again?
 - b) The ruins of an old fort exist on a hill. It was required to determine the distance of the fort from the road and the height of its roof above the plinth with a tacheometer. Observations were made on a 4 m staff held vertical on the entrance gate of the fort and on the roof from the road. Constants of the instrument were 100 and 0.

Instrument station	Height of instrument	Staff station	Vertical angle	Staff readings (m)	
Road	1.45 m	Plinth	+ 10°30'	2.150, 2.720, 3.290	
		Roof	+ 16º24'	1.850, 2.400, 3.040	
OB					

9. Two tangents '*AB*' and '*BC*' interset **OR** . A intersects '*AB*' and '*BC*' at '*D*' and '*E*' such that $\angle_{ADE}^{\text{set}} = 150^{\circ}$ and '*D*' and '*E*' such that $\angle_{ADE}^{\text{set}} = 150^{\circ}$ and '*D*' and '*D*' and that of the second is 300^M. The chainage of B is 950^M. Calculate all data necessary for setting out the compound curve using Rankine's method.

I	JN	IJТ	_V	
			— v	

		UNIT-V			
10.	a)	Explain briefly, how we can perform topographic survey using total station instrument.	6M	5	2
	b)	A vertical photograph was taken from a height of 2000m above MSL. Determine the scale of photograph for an area at an average elevation of 200m above MSL, if focal length of camera is 20cm	6M	5	3
		OR			
11.	a)	Explain the distance measurement in EDM and its computation from phase measurement of EDM. Also elaborate the uses and advantageous of it in surveying.	6M	5	2
	b)	A vertical photograph of size 30cmX25cm were taken to cover total area on ground of 250km ² . If the scale of the photograph is 1cm= 250m. Calculate the number of photographs required if longitudinal overlap is 30% and side overlap is 25%.	6M	5	3