	Hall Ticket Number :			
	ode: 20AC36T	R-20)	
	II B.Tech. I Semester Supplementary Examinations July 20	023		
	Managerial Economics and Financial Analysis			
	(Common to CE & ECE)	Time of 2		
IVI	lax. Marks: 70 ********	Time: 3	HOUIS	
No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks .			
	 Answer ALL the questions in Part-A and Part-B PART-A 			
	(Compulsory question)			
1.	Answer all the following short answer questions $(5 \times 2 = 10)$	M)	CO	BL
a)	State the law of demand.		CO1	L2
b)	Write a short note on Isoquants.		CO2	L1
C)	What is joint Hindu family business?		CO3	L1
d)	List the methods of capital budgeting.		CO4	L3
e)	Differentiate tangible assets from intangible assets.		CO5	L1
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12	– 60 Mai	·ke)	
		Marks	cO	BL
	UNIT–I			
2.	Explain the reasons why demand curve always slopes			
	downwards.	12M	CO1	L2
_	OR			
3.	What are the various forecasting techniques? Explain each	4014		
	of them in detail.	12M	CO1	L2
4.	UNIT-II Evolution the behavior of Total Cost (TC) Total Variable Cost			
4.	Explain the behavior of Total Cost (TC), Total Variable Cost (TVC) and Total Fixed Cost using suitable cost-output			
	diagram.	12M	CO2	L4
	OR		002	_ .
5.	From the following information calculate the breakeven			
	point and the turnover required to earn a profit of			
	Rs.36,000.Given that			
	Fixed overheads-Rs.1,80,000			
	Variable cost per unit-Rs.2/ and Selling price-Rs.20/.			
	If the company is earning a profit of Rs.36, 000, find the			
	margin of safety available to it.	12M	CO2	L1
	UNIT-III			
6.	Explain the price output decision under monopolistic			
	competition in the long run with the help of diagram.	12M	CO3	L1
		D	o 1 of 7	

OR

 Summarize the differences between private company and public company.
 12M CO3 L1

UNIT–IV

8. Discuss the different sources of raising capital, for an organization.

12M CO4 L1

OR

9. Compute the NPV for the projects X and Y and choose the best. The firm's cost of capital is 10%.

	-	
Year	Project X	Project Y
0	70,000	70,000
1	10,000	50,000
2	20,000	40,000
3	30,000	20,000
4	45,000	10,000
5	60,000	10,000

12M CO4 L4

6M CO5 L3

UNIT–V

- 10. a) Discuss the importance of financial statement analysis in business.
 - b) Summarize the managerial applications of ratio analysis. 6M CO5 L3

OR

11. Journalize the following entries in the Books of M/s. Rock Well Industries Ltd.

No	Date	Description	Rs. Lakhs
1	01-05-2020	Started Business with cash	5.00
2	02-05-2020	Deposited in Andhra Bank	3.00
3	05-05-2020	Purchased Goods on Credit from ABC Ltd	15.00
4	08-05-2020	Sold goods on Credit to XYZ Ltd	5.00
5	10-05-2020	Paid Freight Charges by Cheque	0.25
6	25-05-2020	Paid Salaries from Bank	2.00
7	30-05-2020	Drawn Cash from Bank	5.00
8	31-05-2020	Purchased Furniture on Credit from GBL	1.20

*** End ***.

12M CO5 L3

R-20 Il B.Tech. I Semester Supplementary Examinations July 2023 Partial Differential Equations and Numerical Methods (Common to CE and ME) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) Time: 3 Hours 2. In Part-A, each question carries Two marks. Reach question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO3 L2 d) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. CO3 L2 d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 UNIT-I Image: Co Marks CO L1 e) State top and places GM C01 L find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. GM C01 L
Partial Differential Equations and Numerical Methods (Common to CE and ME)Max. Marks: 70Time: 3 HoursMax. Marks: 70*********************************
(Common to CE and ME)Max. Marks: 70Time: 3 Hours********Note: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two marks .3. Answer ALL the questions in Part-A and Part-BPART-A (Compulsory question)1. Answer all the following short answer questions $(5 X 2 = 10M)$ a) Establish a iterative formula to find \sqrt{N} CO1b) State Lagrange's interpolation formula for unequal intervals.CO2c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1 PART-BAnswer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^* = 4 \sin x$ correct to three decimal placesb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.GM CO1
Max. Marks: 70Time: 3 HoursNote: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two marks .3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ a) Establish a iterative formula to find \sqrt{N} CO1b) State Lagrange's interpolation formula for unequal intervals.CO2c) Write $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ at x_0 using forward differences.CO3d) Write the formula to find $K_2 K_4$ in R-K method of 4 th order.CO4L1PART-BAnswer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal placesb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M CO1L
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$ CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx^2}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B <u>UNIT-I</u> 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$ CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
PART-A (Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1PART-BMarks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places6MCO1Lb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6MCO1L
(Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4\sin x$ correct to three decimal places6Mb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M
1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1PART-BAnswer five questions by choosing one question from each unit (5 x 12 = 60 Marks)MarksCOB2. a) Using the bisection method, find a real root of the equation $e^x = 4\sin x$ correct to three decimal places6MCO1b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6MCO1L
a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. CO3 L2 d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
b) State Lagrange's interpolation formula for unequal intervals. c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. Marks CO 1 L
c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. GO3 L2 CO3 L2 CO3 L2 CO4 L1 CO4 L1 CO5 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB
d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation $\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
e) State 1-D and 2-D steady state heat flow equation <u>PART-B</u> Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B <u>UNIT-I</u> 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.
Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.
 UNIT-I 2. a) Using the bisection method, find a real root of the equation e^x = 4 sin x correct to three decimal places b) Find a positive root of the equation x⁴ - x = 10, Using Newton Raphson method. 6M CO1 L
 2. a) Using the bisection method, find a real root of the equation e^x = 4 sin x correct to three decimal places b) Find a positive root of the equation x⁴ - x = 10, Using Newton Raphson method. 6M CO1 L
b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M CO1 L 6M CO1 L
method. 6M CO1 L
OR
3. a) Find a root of the equation $x^3 - 4x - 9 = 0$ using the regula-falsi method. 6M CO1 L
b) Find a root of the $\cos x - 3x + 1 = 0$ by choosing Iteration method. 6M CO1 L
UNIT–II
4. a) Construct Newton's forward interpolation polynomial for the following data.
x 4 6 8 10 y 1 3 8 16 6M CO2 L
b) Estimate the valued <i>f</i> (42) from the following data.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
f(x) 354 332 291 260 231 204 6M CO2 L
OR
5. a) From the following table of half yearly premium for policies maturing at
different ages, estimate the premium for policies maturing at the age 46.

Age	45	50	55	60			
Premium in Rupees	100	122	153	178	6M	CO2	L3

Code: 20AC31T

b) Using Lagrange's formula find the value of y when x = 10.

Х	5	6	9	11
у	12	13	14	16

6M CO2 L3

UNIT-III

	6.	Given that											
			X	1.0	1.2	1.4	1.6	1.8	2.0				
			Y	0	0.128	0.544	1.296	2.432	4.000				
		Find $\frac{dy}{dx}$ and	$\frac{d^2 y}{dx^2}$, - at <i>x</i> =	= 1.1						12M	CO3	L4
						OR							
7.	a)	Calculate the	value	e of $\int_{0}^{\frac{f}{2}}$	sin <i>x dx</i>	by Sim	pson's ´	I/3 rule,	using 1	1 ordinates.	CM	000	
											6M	CO3	L3
	b)	Using Trapezo	oidal	rule Es		$e^{x^2}dx$	aking 1) interva	als.		6M	CO3	L3
						UNIT-	IV						
	8.						to find y	/ when >	x = 1.2 i	n steps of 0.1,			
		given that $\frac{dy}{dx}$	$=x^{2}$	+ y ² a	nd y(1)=						12M	CO4	L4
						OR							
9.	a)	Solve $y^1 = 1 -$	у, :	y(0) = 0	0 by moo	dified Eu	iler's me	ethod an	id obtair	n <i>y</i> at <i>x</i> = 0.1.	6M	CO4	L3
	b)	Find an app	oroxin	nate	value c	of y w	hen x	= 0.1,	if $\frac{dy}{dx}$	$x = x - y^2$ and			
		y = 1 at $x = 0, u$	using	Picaro	d's meth	od.					6M	CO4	L3
						UNIT-							
	10.	on opposite si	des o n ex	of the pression	position on for th	of equil	ibrium a acemen	ind the st t of the	string is string a	same distance released from at subsequent rest.	12M	CO5	L4
						OR							
	11.	An insulated respectively u maintained at	ntil s	steady	state p	revail. I rature a	f B is s	uddenly	reduce	ed to 0°C and	12M	CO5	L4

	Iall Ticket Number :	R-20		
С				
	II B.Tech. I Semester Supplementary Examinations July 20 Strength of Materials	23		
	(Civil Engineering)			
Ν	T T T T	ime: 3 H	ours	
N	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1	Answer all the following short answer questions $(5 \times 2 = 10M)$	C	0	BL
) C	Define factor of safety		1	2
) V	What do you mean by point of contra flexure?		2	2
-	Vrite the assumptions made in the theory of simple bending		3	2
<i>.</i>	Vrite formulas for maximum deflection and maximum bending mo	ment		
'	or simply supported beam subjected to a point load at centre		4	2
) L	ist out various theories of failures in stresses		5	2
	PART-B		-)	
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	Marks	-	BL
	UNIT–I			
•	A 1 m long bar of rectangular cross section 50 x 80 mm is			
	subjected to an axial load of 1.2 kN. Write the maximum			
	stress and strain energy developed in the bar if the load			
	applied is: (i) Gradual. (ii) Sudden. (iii) Falls through a height of 25 mm. Take E = 205 GPa.	12M	4	
	OF 25 Min. Take L = 205 GFa. OR		1	3
-	A specimen of steel 25mm diameter with a guage length of			
•	200mm is tested to destruction . It has an extension of			
	0.16mm under a load of 80kN and the load at elastic limit is			
	160kN .The maximum load is 180kN.The total extension at			
	fracture is 56mm and diameter at neck is 18mm. Find the			
	(i) stress at elastic limit (ii) Young's modulus (iii) Percentage			
	of elongation (iv) Percentage of reduction in area and	12M		
	(v) Ultimate tensile stress.		1	2
-	An overhanging beam is shown in below Figure. Draw the			
•	S.F and B.M diagrams			
	-4 kN/m 6 kN			
	A			
	6 m B 2 m	12M	2	3

12M

12M

12M

12M

12M

3

4

4

5

5

4

3

3

2

4

3

4

OR

5. Draw Shear Force Diagram and Bending Moment diagram for the beam shown below

 For a T – section with dimensions flange width 100mm, Depth = 200mm and uniform thickness of 40mm. obtain shear stress distribution and calculate maximum and average shear stresses if it is subjected to a S.F.=100 KN.

OR

7. a) Derive the simple bending equation
b) Explain about design of simple beam sections
6M 3

UNIT-IV

8. A simple beam of span 4 m is loaded uniformly with 40 kN/m for the third quarter of the span from the left end. Using Macaulay's approach, determine the maximum deflection. $E=2 \times 10^5$ MPa and I = 5 x 107 mm⁴.

OR

9. Determine the deflection of the simply supported beam AB of length 9m carrying two point loads 30 kN and 50 kN at a distance of 3 m and 7 m respectively from the left support using moment area method

UNIT-V

10. A cylindrical drum 400 mm in diameter has a thickness of 8mm. If the drum is subjected to an internal pressure of 2 N/mm², determine the increase in the volume of the drum. Take young's modulus of elasticity, E=1.6x105N/mm² and poisson's ratio = 0.25.

OR

11. Direct stresses of 120MPa tension and 90 MPa compression are applied to an elastic material at a certain point on the planes at right angles. The maximum principal stress is limited to 150MPa. What is the corresponding shear stress on the given planes and the maximum shearing stress at that point?

*** End ***

Hall Ticket Number :														
												R-20		
Code: 20A131T	Somos	tor Si	unn	lom	onto	any F	van	oina	tion	e lub	, <u>,</u> , , , , , , , , , , , , , , , , ,			
ll B.Tech. I									non	S JUIY	2025			
		Adv					-	g						
Max. Marks: 70				I Eng	****	0)				Tim	e: 3 Ho	Urs	
Note: 1. Question Pape 2. In Part-A, each 3. Answer ALL	n questio	on car	ries	Two art-A	mar	ks. Par		Part-	B)					
		((Comp	oulso			n)							
Answer all the follo	owing s		-		• -			(5 X	2 = 1	10M)	C	О В	L
Define ranging.	U				•			``			,		1	
What is whole circl	e bear	ing?											2	
What is an anallati		U	at is	the	use	ofa	an a	nall	atic	lens?)		3	
What are the differ	ent sys	stems	s of	tach	ome	etric	me	asu	rem	ents?)		4	
Write short note or	n Stere	osco	pe.										5	
			-	PAF	RT-B									
Answer <i>five</i> questi	ons by c	hoosii	ng on	e qu	estio	n fro	m ea	ch ui	nit (5 x 12	= 60 M	arks)		
						1						Marks	CO	

UNIT–I

 What are the accessories required for a chain survey? Explain the functions of each.
 12M

OR

3. The following are the bearings observed with a compass, in an area where local attraction was suspected. Calculate the interior angles of the traverse and correct them if necessary.

Line	AB	BC	CD	DE	EA
FB	150°00′	230°30′	306°15′	298°00′	49°30′
BB	330°00′	48°00´	127°45′	120°00′	229°30′

UNIT–II

4. The following consecutive readings were taken with a dumpy level and a 4 m levelling staff on a continuously sloping ground on a straight line at a common interval of 30 m. 0.855 (on A), 1.545, 2.335, 3.115, 3.825, 0.455, 1.380, 2.055, 2.855, 3.455, 0.585, 1.015, 1.850, 2.755, 3.845 (on B). The R.L of A was 380.5 m. Make a level field book and calculate the reduced levels of points using Hiegt of Instrument method and apply usual checks.

12M

12M

OR

5. a) Describe the various uses of contour maps.

6M

b) The offsets taken at 5 m intervals from a chain line to a curved boundary are: 0,4.6, 6.5,6.8,5.2,3.5,2.2 metres. Calculate the area between the chain line, the curved boundary line and the end offsets using siimpson's rule.

6M

12M

UNIT–III

6. The lengths and bearings of lines of closed traverse ABCDE are given below. Examine the lengths and bearing of line EA.

Line	Length, m	Bearing
AB	194.1	85° 30′
BC	201.2	15° 00′
CD	165.4	285° 30′
DE	172.6	195° 30′
	OR	•

7. a) Explain the theodolite traversing by method of included angles. 8M

UNIT-IV

- b) How would you determine the error of closure? Explain. 4M
- 8. A tachometer is setup at an intermediate point on a traverse course PQ and the following observations are made on a staff held vertical.

Staff	Vertical	Staff	Axial Hair
Station	Angle	Intercept	Readings
Р	+9° 30´	2.250	2.105
Q	+6° 00´	2.055	1.975

The constants are 100 and 0. Compute the length PQ and the reduced level of Q. RL of P = 350.50 m.

12M

- OR
- 9. a) Explain fixed hair method and movable hair method of tachometry. 6M
 - b) Derive the tachometric equation for horizontal line of sight. 6M

UNIT–V

- 10. a) Mention the general features of photographic image. 6M
 - b) A line AB 2000 m long lying at an elevation of 500 m measures 8.65 cm on a vertical photograph for which focal length is 20 cm. Determine the scale of a photograph in an area the average elevation of which is about 800 m.

OR

- 11. a) Express the procedure for aerial survey.
 - b) A vertical photograph was taken at an altitude of 1200 m above mean sea level. Determine the scale of photograph for a terrain lying at elevation of 80m and 300m. If the focul length of camera is 15 cm.

*** End ***

6M

6M

6M

		Hall Ticket Number :													
		Code: 20A133T											R-20		
		ll B.Tech. I		ester S chani	cs c		Hyc	drau	lic				2023		
							Time: 3 Hou	irs							
		Note: 1. Question Pape 2. In Part-A, eac 3. Answer ALL	h ques	tion ca	rries	Two	mar	·ks.		Part-	B)				
						PAF	RT-A	<u>.</u>							
				(Comj	pulso	ry qı	ıesti	on)						
1.	Ans	wer all the following sho	ort ansv	wer que	estior	าร	(5)	X 2 =	= 10N	1)				CO	BL
a)	Exp	lain The difference betw	veen A	tmosph	eric	press	ure,	Gau	ge pr	essu	ire a	nd Abs	olute pressure	1	L3
b)	Exp	lain Streamline and Pat	h line											2	L3
c)	Defi	ne momentum equatior	n and n	nention	its a	pplica	ation	S						3	L2
d)	Defi	ne laws of fluid friction												4	L2
e)	Exp	lain the significance of s	surge t	ank.										5	L3
							RT-B								
		Answer <i>five</i> questio	ns by	choosi	ng o	ne qu	uesti	ion f	rom	each	n un	it (5 x ′	-		
					UN	IT-I							Marks	CO	BL
	2. a	a) Two pipes are conne	ected b	y a ma	nome	eter a	is sh	own	in Fig	g.					
			Ň	Gage fil	0.5 m 0.6 m 0.6 m	Wate		1.3 m							
		Determine the press	ure dif	ference	, bet	ween	the	pipe	5				6M	1	L4
	b) An open cylindrical	tank of	height	4m :	and c	cross	ses	siona	al are	ea 0.	1m2 cc	ontains		

b) An open cylindrical tank of height 4m and cross sessional area 0.1m2 contains water upto a height of 2.5m and above it an oil of specific gravity 0.8 for a depth of 1m. Find the pressure intensity of (i) surface of oil (ii) the interface between the two liquids (iii) the base of the tank.

OR

- 3. a) Prove that the reaction between the gates of lock is equal to reaction at hinge?
 6M 1 L3
 b) Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 2 m below the free surface of water. Find the position of centre of pressure also.
 6M 1 L4
- 4. a) Discuss the conditions for vorticity and irrotationality. 4M

6M

1

2

L2

L4

	b)	Show that the streamlines for a flow whose velocity components are $u=c(x^2-y^2)$ and $v = -2cxy$, where c is a constant, are given by the equation $x^2y-y^3/3=constant$. At which point (points) is the flow parallel to the y axis? At which point (points) is the fluid stationary?	8M	2	L4
		OR			
5.	a)	Derive an expression for three dimensional continuity equation for fluid flow. State necessary assumptions	8M	2	L4
	b)	The velocity potential function for a 2-D fluid flow is $=4x(1-2y)$. At a point P(4,5) determine (i) flow velocity (ii) the value of			
		stream function	4M	2	L4
		UNIT–III			
6.	a)	State the momentum equation. Derive momentum equation for determining the force exerted by a flowing liquid on a pipe bend	5M	3	L3
	b)	A rectangular channel 5 m wide carries 2500 lit/sec at a depth of 1 m. What height of a broad crested rectangular weir must be installed to double the			
		depth? Assume weir coefficient of 0.88.	7M	3	L4
		OR			
7.	a)	The trapezoidal channel of Fig. is made of brickwork and slopes at 1:500. Determine the flow rate if the normal depth is 80 cm.			
		30° 30°			
		2 m	8M	3	L4
	b)	Derive Bernoulli's equation	4M	3	L2
		UNIT-IV			
8.		Derive Darcy–Weisbach equation. State the assumptions.	12M	4	L3
		OR			
9.	a)	Derive Hazen-Poiseuille equation for laminar flow in circular pipes	4M	4	L2
	b)	For laminar flow of oil having dynamic viscosity is 1.65 Pa.s in a 0.25 m dia pipe, the velocity distribution is parabolic with a maximum point velocity of 4			
		m/s at the Centre of the pipe. Calculate the shearing stresses at pipe wall and within the fluid 40mm from the pipe wall.	8M	4	L4
		UNIT–V			
10.	a)	With a neat sketch Explain the important parts of centrifugal pump	5M	5	L2
	b)	A centrifugal Pump is to discharge 0.25 m ³ /s at a speed of 1500			
		RPM against a head of 25 m. the impeller diameter is 250 mm, its width at outlet			
		is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	7M	5	L4
		OR			
11.	a)	Classify the hydraulic turbines and With a neat sketch the parts of Pelton		_	
		turbine.	5M	5	L4
	b)	Design a pelton wheel for head of 60 m, running at speed of 200 RPM and develops shaft power of 100 kW. Velocity of bucket is half the velocity of jet and overall efficiency is considered to be 90% and coefficient of velocity is 0.98.	7M	5	L4
		*** End ***		0	