\square
Code: 20AC36T

R-20

II B.Tech. I Semester Supplementary Examinations July 2023

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) State the law of demand. CO1 L2
b) Write a short note on Isoquants. CO2 L1
c) What is joint Hindu family business? $\quad \mathrm{CO}$ L1
d) List the methods of capital budgeting. CO4 L3
e) Differentiate tangible assets from intangible assets.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Explain the reasons why demand curve always slopes downwards.

12M CO1

OR

3. What are the various forecasting techniques? Explain each of them in detail.

UNIT-II

4. Explain the behavior of Total Cost (TC), Total Variable Cost (TVC) and Total Fixed Cost using suitable cost-output diagram.

12M CO2 L4

OR

5. From the following information calculate the breakeven point and the turnover required to earn a profit of Rs.36,000.Given that
Fixed overheads-Rs.1,80,000
Variable cost per unit-Rs.2/ and Selling price-Rs.20/.
If the company is earning a profit of Rs.36, 000, find the margin of safety available to it.

12M CO2

UNIT-III

6. Explain the price output decision under monopolistic competition in the long run with the help of diagram.
7. Summarize the differences between private company and public company.

UNIT-IV

8. Discuss the different sources of raising capital, for an organization.

OR

9. Compute the NPV for the projects X and Y and choose the best. The firm's cost of capital is 10\%.

Year	Project X	Project Y
0	70,000	70,000
1	10,000	50,000
2	20,000	40,000
3	30,000	20,000
4	45,000	10,000
5	60,000	10,000

UNIT-V

10. a) Discuss the importance of financial statement analysis in business.

6M co5 L3
b) Summarize the managerial applications of ratio analysis.

6 M CO5 L3

OR

11. Journalize the following entries in the Books of M / s. Rock Well Industries Ltd.

No	Date	Description	Rs. Lakhs
1	$01-05-2020$	Started Business with cash	5.00
2	$02-05-2020$	Deposited in Andhra Bank	3.00
3	$05-05-2020$	Purchased Goods on Credit from ABC Ltd	15.00
4	$08-05-2020$	Sold goods on Credit to XYZ Ltd	5.00
5	$10-05-2020$	Paid Freight Charges by Cheque	0.25
6	$25-05-2020$	Paid Salaries from Bank	2.00
7	$30-05-2020$	Drawn Cash from Bank	5.00
8	$31-05-2020$	Purchased Furniture on Credit from GBL	1.20

12 M CO5 L3
\square
Code: 20AC31T
II B.Tech. I Semester Supplementary Examinations July 2023

Partial Differential Equations and Numerical Methods

(Common to CE and ME)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Establish a iterative formula to find \sqrt{N}
b) State Lagrange's interpolation formula for unequal intervals.
c) Write $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at x_{0} using forward differences.
d) Write the formula to find $\mathrm{K}_{2} \mathrm{~K}_{4}$ in R-K method of $4^{\text {th }}$ order.
e) State 1-D and 2-D steady state heat flow equation

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Using the bisection method, find a real root of the equation $e^{x}=4 \sin x$ correct to three decimal places
b) Find a positive root of the equation $x^{4}-x=10$, Using Newton Raphson method.

OR

3. a) Find a root of the equation $x^{3}-4 x-9=0$ using the regula-falsi method.

6M CO1
L3
b) Find a root of the $\cos x-3 x+1=0$ by choosing Iteration method.

6M CO1
L4

UNIT-II

4. a) Construct Newton's forward interpolation polynomial for the following data.

x	4	6	8	10
y	1	3	8	16

6M CO2 L3
b) Estimate the valued $f(42)$ from the following data.

X	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

OR

5. a) From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at the age 46.

Age	45	50	55	60
Premium in Rupees	100	122	153	178

b) Using Lagrange's formula find the value of y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

UNIT-III

6. Given that

X	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	0.128	0.544	1.296	2.432	4.000

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$
12M CO3 L4

OR

7. a) Calculate the value of $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Simpson's $1 / 3$ rule, using 11 ordinates.
b) Using Trapezoidal rule Estimate $\int_{0}^{2} e^{x^{2}} d x$ taking 10 intervals.

6 M CO3 L3

UNIT-IV

8. Use Runge-Kutta method of fourth order to find y when $x=1.2$ in steps of 0.1 , given that $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(1)=1.5$.

OR

9. a) Solve $y^{1}=1-y, \quad y(0)=0$ by modified Euler's method and obtain y at $x=0.1$.
b) Find an approximate value of y when $x=0.1$, if $\frac{d y}{d x}=x-y^{2}$ and $y=1$ at $x=0$, using Picard's method.

UNIT-V

10. The points of trisection of a string are pulled a side through the same distance on opposite sides of the position of equilibrium and the string is released from rest. Derive an expression for the displacement of the string at subsequent time and show that the mid-point of the string always remains at rest.

12M CO5 L4

OR

11. An insulated rod of length / has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t .

12M CO5 L4

Code: 20A132T

II B.Tech. I Semester Supplementary Examinations July 2023

Strength of Materials

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Define factor of safety
b) What do you mean by point of contra flexure?
c) Write the assumptions made in the theory of simple bending
d) Write formulas for maximum deflection and maximum bending moment for simply supported beam subjected to a point load at centre
e) List out various theories of failures in stresses $\quad 5 \quad 2$

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks) Marks CO BL

UNIT-I

2. A 1 m long bar of rectangular cross section $50 \times 80 \mathrm{~mm}$ is subjected to an axial load of 1.2 kN . Write the maximum stress and strain energy developed in the bar if the load applied is: (i) Gradual. (ii) Sudden. (iii) Falls through a height of 25 mm . Take E = 205 GPa .

OR

3. A specimen of steel 25 mm diameter with a guage length of 200 mm is tested to destruction .It has an extension of 0.16 mm under a load of 80 kN and the load at elastic limit is 160 kN . The maximum load is 180 kN . The total extension at fracture is 56 mm and diameter at neck is 18 mm . Find the (i) stress at elastic limit (ii) Young's modulus (iii) Percentage of elongation (iv) Percentage of reduction in area and (v) Ultimate tensile stress.

UNIT-II

4. An overhanging beam is shown in below Figure. Draw the S.F and B.M diagrams

OR

5. Draw Shear Force Diagram and Bending Moment diagram for the beam shown below

12M 24
6. For a T - section with dimensions flange width 100 mm , Depth $=200 \mathrm{~mm}$ and uniform thickness of 40 mm . obtain shear stress distribution and calculate maximum and average shear stresses if it is subjected to a S.F. $=100 \mathrm{KN}$.

OR

7. a) Derive the simple bending equation

6M $3 \quad 3$
b) Explain about design of simple beam sections

6M 3

UNIT-IV

8. A simple beam of span 4 m is loaded uniformly with $40 \mathrm{kN} / \mathrm{m}$ for the third quarter of the span from the left end. Using Macaulay's approach, determine the maximum deflection. $\mathrm{E}=2 \times 10^{5} \mathrm{MPa}$ and $\mathrm{I}=5 \times 107 \mathrm{~mm}^{4}$.

OR

9. Determine the deflection of the simply supported beam $A B$ of length 9 m carrying two point loads 30 kN and 50 kN at a distance of 3 m and 7 m respectively from the left support using moment area method

12M 4
3

UNIT-V

10. A cylindrical drum 400 mm in diameter has a thickness of 8 mm . If the drum is subjected to an internal pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$, determine the increase in the volume of the drum. Take young's modulus of elasticity, $\mathrm{E}=1.6 \times 105 \mathrm{~N} / \mathrm{mm}^{2}$ and poisson's ratio $=0.25$.
$12 \mathrm{M} \quad 5 \quad 4$

OR

11. Direct stresses of 120MPa tension and 90 MPa compression are applied to an elastic material at a certain point on the planes at right angles. The maximum principal stress is limited to 150 MPa . What is the corresponding shear stress on the given planes and the maximum shearing stress at that point?

II B.Tech. I Semester Supplementary Examinations July 2023

Advanced Surveying

(Civil Engineering)
Max. Marks: 70

Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Define ranging. 1
b) What is whole circle bearing? 2
c) What is an anallatic lens? What is the use of an anallatic lens? 3
d) What are the different systems of tachometric measurements? 4
e) Write short note on Stereoscope. 5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. What are the accessories required for a chain survey? Explain the functions of each.

OR

3. The following are the bearings observed with a compass, in an area where local attraction was suspected. Calculate the interior angles of the traverse and correct them if necessary.

Line	AB	BC	CD	DE	EA
FB	$150^{\circ} 00^{\prime}$	$230^{\circ} 30^{\prime}$	$306^{\circ} 15^{\prime}$	$298^{\circ} 00^{\prime}$	$49^{\circ} 30^{\prime}$
BB	$330^{\circ} 00^{\prime}$	$48^{\circ} 00^{\prime}$	$127^{\circ} 45^{\prime}$	$120^{\circ} 00^{\prime}$	$229^{\circ} 30^{\prime}$

UNIT-II

4. The following consecutive readings were taken with a dumpy and apply usual checks.
> level and a 4 m levelling staff on a continuously sloping ground on a straight line at a common interval of 30 m .0 .855 (on A), 1.545, 2.335, 3.115, 3.825, 0.455, 1.380, 2.055, $2.855,3.455,0.585,1.015,1.850,2.755,3.845$ (on B). The R.L of A was 380.5 m . Make a level field book and calculate the reduced levels of points using Hiegt of Instrument method

OR

5. a) Describe the various uses of contour maps.
b) The offsets taken at 5 m intervals from a chain line to a curved boundary are: 0,4.6, 6.5,6.8,5.2,3.5,2.2 metres. Calculate the area between the chain line, the curved boundary line and the end offsets using siimpson's rule.

UNIT-III

6. The lengths and bearings of lines of closed traverse ABCDE are given below. Examine the lengths and bearing of line EA.

Line	Length, m	Bearing
AB	194.1	$85^{\circ} 30^{\prime}$
BC	201.2	$15^{\circ} 00^{\prime}$
CD	165.4	$285^{\circ} 30^{\prime}$
DE	172.6	$195^{\circ} 30^{\prime}$

OR

7. a) Explain the theodolite traversing by method of included angles.
b) How would you determine the error of closure? Explain.

UNIT-IV

8. A tachometer is setup at an intermediate point on a traverse course PQ and the following observations are made on a staff held vertical.

Staff Station	Vertical Angle	Staff Intercept	Axial Hair Readings
P	$+9^{\circ} 30^{\prime}$	2.250	2.105
Q	$+6^{\circ} 00^{\prime}$	2.055	1.975

The constants are 100 and 0 . Compute the length $P Q$ and the reduced level of Q. RL of $P=350.50 \mathrm{~m}$.
9. a) Explain fixed hair method and movable hair method of tachometry.
b) Derive the tachometric equation for horizontal line of sight.

UNIT-V

10. a) Mention the general features of photographic image.
b) A line $A B 2000 \mathrm{~m}$ long lying at an elevation of 500 m measures 8.65 cm on a vertical photograph for which focal length is 20 cm . Determine the scale of a photograph in an area the average elevation of which is about 800 m .

OR

11. a) Express the procedure for aerial survey.
b) A vertical photograph was taken at an altitude of 1200 m above mean sea level. Determine the scale of photograph for a terrain lying at elevation of 80 m and 300 m . If the focul length of camera is 15 cm .
\square

Code: 20A133T

II B.Tech. I Semester Supplementary Examinations July 2023

Fluid Mechanics and Hydraulic Engineering

Max. Marks: 70

> (Civil Engineering)

Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$	CO	BL	
a)	Explain The difference between Atmospheric pressure, Gauge pressure and Absolute pressure	1	L3
b)	Explain Streamline and Path line	2	L3
c) Define momentum equation and mention its applications	3	L2	
d) Define laws of fluid friction	4	L2	
e) Explain the significance of surge tank.	5	L3	

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Two pipes are connected by a manometer as shown in Fig.

Determine the pressure difference, between the pipes
b) An open cylindrical tank of height 4 m and cross sessional area 0.1 m 2 contains water upto a height of 2.5 m and above it an oil of specific gravity 0.8 for a depth of 1 m . Find the pressure intensity of (i) surface of oil (ii) the interface between the two liquids (iii) the base of the tank.

OR
3. a) Prove that the reaction between the gates of lock is equal to reaction at hinge?

6M 1 L3
b) Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 2 m below the free surface of water. Find the position of centre of pressure also.
4. a) Discuss the conditions for vorticity and irrotationality.
b) Show that the streamlines for a flow whose velocity components are $u=c\left(x^{2}-y^{2}\right)$ and $v=-2 c x y$, where c is a constant, are given by the equation $x^{2} y-y^{3} / 3=$ constant. At which point (points) is the flow parallel to the y axis? At which point (points) is the fluid stationary?

OR

5. a) Derive an expression for three dimensional continuity equation for fluid flow. State necessary assumptions
b) The velocity potential function for a 2-D fluid flow is $\phi=4 x(1-2 y)$. At a point $\mathrm{P}(4,5)$ determine (i) flow velocity (ii) the value of stream function

UNIT-III

6. a) State the momentum equation. Derive momentum equation for determining the force exerted by a flowing liquid on a pipe bend
$5 \mathrm{M} \quad 3$ L3
b) A rectangular channel 5 m wide carries $2500 \mathrm{lit} / \mathrm{sec}$ at a depth of 1 m . What height of a broad crested rectangular weir must be installed to double the depth? Assume weir coefficient of 0.88 .

OR

7. a) The trapezoidal channel of Fig. is made of brickwork and slopes at 1:500. Determine the flow rate if the normal depth is 80 cm .

b) Derive Bernoulli's equation
8. Derive Darcy-Weisbach equation. State the assumptions.

OR

9. a) Derive Hazen-Poiseuille equation for laminar flow in circular pipes
b) For laminar flow of oil having dynamic viscosity is $1.65 \mathrm{~Pa} . \mathrm{s}$ in a 0.25 m dia pipe, the velocity distribution is parabolic with a maximum point velocity of 4 m / s at the Centre of the pipe. Calculate the shearing stresses at pipe wall and within the fluid 40 mm from the pipe wall.
$8 \mathrm{M} \quad 4 \quad$ L4

UNIT-V

10. a) With a neat sketch Explain the important parts of centrifugal pump
$5 \mathrm{M} \quad 5 \mathrm{~L} 2$
b) A centrifugal Pump is to discharge $0.25 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of 1500

RPM against a head of 25 m . the impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.

OR

11. a) Classify the hydraulic turbines and With a neat sketch the parts of Pelton turbine.
$5 \mathrm{M} \quad 5 \quad \mathrm{~L} 4$
b) Design a pelton wheel for head of 60 m , running at speed of 200 RPM and develops shaft power of 100 kW . Velocity of bucket is half the velocity of jet and overall efficiency is considered to be 90% and coefficient of velocity is 0.98 .
$7 \mathrm{M} \quad 5 \quad \mathrm{~L} 4$
