Hall Ticket Number :						Г			
Code: 20A131T	<u> </u>						R-20		
	Semester S	upplme	entary Ex	kamina	tions	Augus	1 2022		
			ed Surve			Ũ			
		(Civil E	ngineerir	ng)					
Max. Marks: 70		**	****				Time: 3 Ho	ours	
Note: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h question car	ries Two	o mark.		t -B)				
	(1		<u>ART-A</u> ory questi	on)					
1. Answer all the fo		-	• -	(5X	2 = 10	(MC	CO	BT	٢L
a) Differentiate who	•		•	•		,	2		3
b) List any four use	s of contour m	aps.		-	-		3	5	2
c) Find the height 100.855m and th held inverted aga	he staff readin	g on the	floor is 2	055m. T	he rea				3
d) With neat sketch							5		2
e) List the uses of [•						5		2
,		P	ART-B						
Answer <i>five</i> question	ons by choos	ing one	question	from ea	ch ur	nit (5 x 1	2 = 60 Marks	5)	
							Marks	СО	BTL
a) List different types of	f cross staffs a	-UNIT Und expla		es in sur	vevin	α.	6M	1	2
b) In passing an obstac		•			•	•			_

- b) In passing an obstacle in the form of a pond, stations A and D, on the main line, were taken on the opposite sides of the pond. On the left of AD, a line AB, 200m long was laid down and a second line AC, 250m long was ranged on the right of AD. The points B,D and C being in the same straight line. BD and DC were then chained and found to be 125m and 150m respectively. Find the length of AD.
- OR 3. a) Define ranging and explain the method of indirect ranging with sketch. 6M
 - b) With neat sketch illustrate intersection method of plane table survey.

UNIT–II

4. a) Following consecutive readings were taken with a level and 4m staff on a continuously sloping ground at a common interval of 30m. Reduce level of the first point was 180.750m. Rule out a page of a level field book and enter the above readings. Calculate reduce levels of the points by collimation method. Apply Arithmetic check. Also find the difference in RL from first point to last point.

0.780	1.535	1.955	2.430	2.985	3.480	1.155	1.960	2.365
3.640	0.935	1.045	1.630	2.545				

b) Define the following terms.

2.

- (i) Face left and Face right observation
- (ii) Swinging and Transiting the telescope

8M 3

4M 1 2

6M

6M

5

3

2

3

2

2

4

Code: 20A131T

OR

5. a) Explain temporary adjustments of dumpy level. Write neat sketch for

5.	a)	three scre	•			npy level. White hea		6M	1	2
	b)	level in contained	a directio d in a ler	on traverse	to the control to the	s 2:1. Assuming the g enter line. Calculate nter height at 20m int	the volume	6M	4	3
		2.3111, 3.7	111, 5.9111,	, 4.1111, 3.7111	uni, 2.911, 2.			OIVI	4	3
6	a)	Explain t	he metho	nd of measu		ontal angle by repetition	on with table			
0.	u)	for record				indi anglo by ropotiti		8M	2	2
	b)	Compare	tempora	iry and perm	anent adj	ustments of vernier tra	ansit	4M	1	3
					OR					
7.	a)	List the u	ses of ve	ernier micron	neter			4M	5	2
	b)		•		enumera	te fundamental lines	and desired			-
		relations	of a trans	Sit.				8M	1	2
0	-	Coloulate	مريم مرام	inclus of 10			ve hevine e			
8.	a)					ces for a circular cur 4m. And explain the p	•			
		•		ne in field.				6M	5	3
	b)			• •	•	of a fixed hair instru				
		•				ingle of elevation bein	•			
						What would be the tota trument at the same				
		-				the same point, the v				
				•		ts 1000 and 0.5?	U	6M	2	4
					OR					
9.	a)			•		ermined by observation rvey. The staff was he				
		•	•			tted within an anallac				
				-		pute the elevation of h the observations	•			
				•	•	of A and B from P.				
		Inst	Height	Staff	Vertical	Staff readings	Elevation			
		Station	of axis	point	angle	Č	of station			
		<u>A</u>	1.42	P	+2°24'	1.230, 2.005, 2.880	77.750 m		-	
		B	1.40	P	- 3°36'	0.785, 1.800, 2.815	97.135 m	6M	2	4
	b)	•	•	thod with ne	•	a simple circular curv	e by offsets	6M	5	2
					UNI				c	-
10.	,	•		v two softwa		•		6M	3	2
	b)	Enumera	te the ad	vantages of		on over theodolite.		6M	5	2
11.	a)	Enumera	te the ins	strumental e	OR rrors in DO	GPS		6M	5	2
	,									

b) List the advantages and disadvantages of Drone based survey

*** End ***

5

2

6M

	Hall	Ticket Number :			1
Ċ	Cod	e: 20A133T	R-20)	
		II B.Tech. I Semester Supplmentary Examinations August 2	2022		
		Fluid Mechanics and Hydraulic Engineering			
	Mo	(Civil Engineering) Ix. Marks: 70	Time: 3	8 1100	rc
	1010	*******		1100	5
ľ	Note	 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
	1.	Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$) CC)	oms evel
a)		Vhat are root causes for viscosity of fluids?	, CO		L1
b)		Give practical examples for laminar and turbulent flow in our daily life	CO	1	L2
c)	Е	xplain the working principle of Venturimeter?	CO	1	L2
d)	D	raw Moody's diagram. State its use in design of pipe	CO	1	L2
e)	V	Vhat is meant by minimum starting speed of centrifugal pump?	CO	1	L1
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	0 Mark	s)	
			Marks	со	Blooms Level
_		UNIT-I			
2.	a)	Difference between (i) mass density and Weight density (ii) Newtonian fluid and Non-Newtonian fluid (ii) Ideal fluid and Real fluid	6M	CO1	L2
	b)	The space between two square flat parallel plates is filled with oil. Each side of the plate is 720 mm. The thickness of the oil film is 15 mm. The upper plate, which moves at 3 m/s requires a force of 120 N to maintain the speed. Determine: (i) The dynamic viscosity of the oil; (ii) The kinematic viscosity of oil if the specific gravity of oil is 0.95	6M	CO1	L4
		OR			
3.	a)	What is centre of buoyancy? Explain the different types of equilibriums of floating body	6M	CO1	L2
	b)	A solid cylinder 2 m in diameter and 2m high is floating in water with its axis vertical. If the specific gravity of the material of cylinder is 0.65 find its meta-centric height. State also whether the equilibrium is stable or unstable	6M	CO1	L4
		UNIT-II			
4.	a)	Explain the typical characterizes of velocity potential function and stream function	6M	CO2	L2
	b)	In a three-dimensional incompressible fluid flow, the velocity components			
		are: $u = x^2 + z^2 + 5$, $v = y^2 + z^2 - 3$ (i) Determine the third component of velocity. (ii) Is the fluid flow irrotational?	6M	CO2	L4
		OR			

OR

- 5. a) How is the continuity equation based on the principle of conservation of mass stated? Derive the continuity equation in Cartesian coordinates
 b) If the valuation field is given by an analysis of the principle of conservation of the principle of the principle of conservation of the principle of the
 - b) If the velocity field is given by $u = x^2 y^2 + x$ and v = -(2xy + y), determine and .

6M CO2

L3

L4

			Code: 2	20A133T	
_					
6.	a) b)	State assumption of Bernoulli's equation. Derive Bernoulli's equation A pipe 300 meters long has a slope of 1 in 10 ^o and tapers from 1.0 m diameter at the higher end to 0.5 m at the lower end. Quantity of water		CO3	L3
		flowing is 90 litre/s. If the pressure at higher end is 70 kN/m ² , find the pressure at the lower end.	6M		L4
		OR			
7.	a)	Find an expression for the discharge over a triangular notch or weir in terms of head of water over the crest of the notch or weir	6M	CO3	L2
	b)	A rectangular channel 2.0 m wide has a discharge of 0.25 m ³ /s, which is measured by a right angled V-notch. Find the position of the apex of the notch from the bed of the channel if the maximum depth of water is not to exceed 1.3 m. Assume Cd = 0.62.		CO3	
			OIVI	03	L4
8.	a)	UNIT–I Derive the Darcy-Weisbach equation for loss of head due to friction	6M	CO4	L3
0.	a) b)	Two pipes of diameters 400 mm and 200 mm are each 300 m long. When the pipes are connected in series the discharge through the pipeline is 0.10 m^3 /s, find the loss of head incurred. What would be the loss of head in the system to pass the same total discharge when the pipes are connected in parallel? Take friction factor = 0.0075 for each		004	LS
		pipe.	6M	CO4	L4
		OR			
9.	a)	Why pipes are connected in series and parallel? State their hydraulic conditions to be satisfied.	6M	CO4	L4
	b)	An oil of viscosity 9 poise and specific gravity 0.9 is flowing through a horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of the pipe is 1800 kN/m ² , determine: (i) The rate of flow of oil; (ii) The centre-line velocity; (iii) The total frictional drag over 100 m length; (iv) The power required to maintain the flow; (v) The velocity gradient at the pipe wall; (vi) The velocity and shear stress at 8 mm from the wall		CO4	L4
		UNIT-V			
10.	a)	A reaction turbine works at 450 r.p.m. under a head of 120 m. Its diameter at inlet is 1.2 m and the flow area is 0.4 m ² . The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine: (i) The volume flow rate, (ii) The			
		power developed, and (iii) The hydraulic efficiency.	6M	CO5	L5
	b)	Draw a general layout of a hydroelectric power plant using an impulse turbine and define the following: (i) Gross head, (ii) Net head, (iii) Hydraulic efficiency, and (iv) Overall efficiency of the impulse turbine		CO5	L2
		OR			
11.	a)	What is priming? Why is it necessary in centrifugal pump?	6M	CO5	L3
	b)	The impeller of a centrifugal pump has an external diameter of 400 mm and internal diameter of 180 mm and it runs at 1440 r.p.m. Assuming a constant radial flow through the impeller at 2.5 m/s and that the vanes at the exit are set back at an angle of 25°, determine : (i) Inlet vane angle, (ii) The angle, absolute velocity of water at the exit makes with the			
		tangent, and (iii) The work done per N of water *** End ***	6M	CO5	L5

		R-2	20	
Code: 20	DAC36T II B.Tech. I Semester Supplmentary Examinations August :			
	Managerial Economics and Financial Analysis			
Max. Ma	(Common to CE & ECE) arks: 70	Time: 3	3 Hours	5
2.]	Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark . Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. A	nswer all the following short answer questions (5 X 2 = 10N	Л)	СО	Bloon Leve
a)	Law of diminishing marginal utility		CO1	L1
b)	Iso-quants and iso-costs		CO2	L1
c)	Characteristics of monopolistic competition.		CO2	L2
d)	Scope of capital budgeting		CO2	L2
e)	Double entry bookkeeping		CO1	L1
	PART-B			
Ans	wer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	50 Mark Marks	ks) CO	Bloon
	UNIT–I	IVIAI KS	00	Leve
a) Dis	scuss the nature and scope of managerial economics.	6M	CO2	L
	ucidate the relationship of managerial economics with	0111	002	-
,	ner areas.	6M	CO3	L
	OR			
a) De	fine demand. Explain different types of demand.	6M	CO1	L
•	plain the law of demand and its exceptions.	6M	CO2	L
-	UNIT-II			
a) Ex	plain the determinants of cost.	6M	CO2	L
b) Ide	entify different bases of cost classification.	6m	CO1	L
	OR			
_	plain graphically the cost-output relationship in the ng-run.	12M	CO3	L
	UNIT-III			
a) Sta	ate the characteristics of an oligopoly market.	6M	CO2	L
b) Dif	ferentiate joint stock company and cooperative society			
for	m business.	6M	CO3	L

Code: 20AC36T

7.		State the forms and functions of different types sector organizations.	-	2M	CO2	L2
		UNIT-IV			002	LZ
8.	a)	Discuss the sources of raising capital.	6	6M	CO2	L3
	b)	Explain what is profitability index. Discuss wh superior ranking criterion, profitability index or present value.	the net	6M	CO3	L3
		OR				
9.		An investment would cost `100,000 and provide	e annual			
		cash inflow of `21,150 for 6 years. If the opportu of capital is 10 per cent, calculate the Net Prese (NPV) and Internal Rate of Return (IRR)	ent Value			
		investment.	12	2M	CO3	L3
		UNIT–V				
10.	a)	State the accounting principles and ac conventions.	•	6M	CO1	L3
	h)	"Every debit must have a corresponding credit".			CO3	L3
	0)	OR			003	LJ
11.	a)	process.	6	6M	CO2	L3
	b)	For Pavani Ltd., calculate debtor's turnover ratio the flowing information:	from			
		Sundry debtors at beginning `20,00,000				
		Sundry debtors at end `12,50,000				
		Sales `25,50,250 *** End ***	6	6M	CO3	L4

Hall Ticket Number :			-
Code: 20AC31T	R-2	20	
II B.Tech. I Semester Supplmentary Examinations August	2022		
Partial Differential Equations and Numerical Metho	ods		
(Common to CE and ME) Max. Marks: 70	Time: 3	3 Hour	ſS
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 1)$	IOM)	СО	Blooms
a) Explain the Method of false position.		CO1	Level L1
b) Define forward differences.		CO2	L2
 c) Write formulas for first and second derivatives using Newt backward interpolation formula. 	on's	CO3	L3
 d) Explain Euler's method to solve the IVP 			
$\frac{dy}{dx} = f(x, y) \text{ with } y(x_0) = y_0.$		CO4	L2
 e) Write the suitable solution of one dimensional heat equation PART-B 		CO5	L1
Answer <i>five</i> questions by choosing one question from each unit (5 x 12		-	Blooms
	Marks	CO	Level
UNIT–I			
2. a) Find a real root of the equation $x \log_{10} x = 1.2$ by regula-			
falsi method correct to four decimal places.	6M	CO1	L4
 b) Develop an Iterative formula to find the kth root of a positive number N.Using Newton-Raphson method. 		CO1	L3
(OR)	0101	COT	LJ
a) Using bisection method, compute the real root of the	1		
equation $x^3 - x - 11 = 0$.		CO1	L3
b) Find a real root of the equation $2x - \log_{10} x = 7$, using			
iteration method.	6M	CO1	L4
UNIT–II			
a) Evaluate $\Delta \left(e^x \log 2x \right)$.	6M	CO2	L2
		ge 1 of	
	-	J	

b) Using Newton's forward formula compute f(142) from the following table:

		following	j table):							
			x	140	150	160	170	180			
			f(x)	3.685	4.854	6.302	8.076	10.225	6M	CO2	L4
				<u>.</u>	(OR)	<u>.</u>		-		
5.	a)				-			nd the va	•		
		when x	=10 il]	y are giv	/en.		
				2		5 9	11				
						13 14			6M	CO2	L3
	b)	Find the	e poly	nomial	f(x) fr	om the	followin	g data			
					<i>x</i> 0 1	4	5				
				=	y 4 1	3 24	39		6M	CO2	L4
				_							
					UN	IIT–III					
•	、	_	d	$y d^2 y$		2		ollowing c			
6.	a)	Determ	ine $\frac{d}{d}$	\overline{x} , $\overline{dx^2}$	at $x =$	= 2 from	m the fo	ollowing c	data		
				x	0 1 2	3 4	5				
				У	0 1 8	27 64	4 125		6M	CO3	L4
			1	n							
	b)	Evaluat	$\int x^{*}$	dx	vith five	e sub-in	tervals	by Trape	zoidal		
			0					by hape			
		Rule				• • •			6M	CO3	L3
		1			-	OR)					
7.	a)	<u></u>	dx	·		o (oth		ng $h = 1/$	_		
		Find J	$1 + x^2$	by Sin	npson's	5 3/8" rt	le takir	h = 1/2	6. 6M	CO3	L3
			2	.2							
	b)	Evaluat	te, $\int e^{t}$	dx by	' using '	Trapezo	oidal rul	e and			
		Simpso	$n's \frac{1}{2}$	rd rule	takina	h = 0.2	5.				
		1	- 3						6M	CO3	L3

UNIT–IV

8. a) Find y(0.1) by Taylor's series expansion when

$$\frac{dy}{dx} = x - y^2, y(0) = 1$$
 6M CO4 L3

b) Apply Runge-Kutta method of 4th order, to find an approximate value of *y* when x = 0.2 given that $\frac{dy}{dx} = x + y$, y(0) = 1. 6M CO4 L3

(OR)

9. a) Given that $\frac{dy}{dx} = 2 + \sqrt{xy}$, y(1) = 1

Find y(2) in steps of 0.2 using the Euler's method. 6M CO4 L3

b) Obtain Picard's second approximate solution of the initial

value problem
$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$$
, $y(0) = 0$.
UNIT-V
ONIT-V
ONIT-V
ONIT-V

10. Solve the wave equation $\frac{\partial}{\partial t^2} = c^2 \frac{\partial}{\partial x^2}$ under the conditions

$$y(0,t) = 0, \ y(L,t) = 0 \text{ for all } t;$$

$$y(x,0) = f(x) \text{ and } \left(\frac{\partial y}{\partial t}\right)_{t=0} = g(x), 0 < x < L.$$

$$12M \text{ CO5 } L2$$

11. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$u(x,0) = \begin{cases} x , & 0 \le x \le 50\\ 100 - x , & 50 \le x \le 100 \end{cases}$$

Find the temperature u(x,t) at any time. 12M CO5 L3

Page 3 of 3

	Hall Ticket Number :	-]	
	Code: 20A132T	R-20		
	II B.Tech. I Semester Supplmentary Examinations August 20)22		
	Strength of Materials			
		ime: 3 l	Hour	S
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two mark.			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
	1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \times 10^{-1} \times 10^{-1}$) C	0	Blooms Level
a)	A steel bar 600mm long and having 30mm diameter, is turned down	to		Level
-	25mm diameter for one fourth of its length. It is heated at 30C above roo			
	temperature, clamped at both ends and then allowed to cool to roc			
	temperature. If the distance between the clamps is unchanged, t maximum stress in the bar ($=12.5 \times 10^{-6}$ per C and E=200 GN/m ²) is	ine CC	71	2
b)	Draw the bending diagram for a simple supported carryi			Z
0)	concentrated load at mid span.	CC)2	2
c)	The safe stress for a hollow steel column which carries an axial load	lof		
	2100 kN is 125 MN/m2. if the external diameter of the column is 30c	;m,		
	what will be the internal diameter?	CC)3	2
d)	A simple supported beam of span I is carrying point load W at the n span. What is the deflection at the centre of the beam?	nid CC)4	2
e)	A water main of 1.5 m diameter and 20 mm thick is subjected to	an		
	pressure of 1.5N/mm2. Calculate the circumferential stress induced			
	the pipe.	CC	05	2
	PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$	Monka)	
	Answer <i>five</i> questions by choosing one question from each unit ($3 \times 12 = 00$	Marks	, co	Blooms
	UNIT–I			Level
2.				
	a tensile force of 60 kN. Determine modulus of rigidity, bulk			
	modulus and change in volume if Poisson's ratio =0.3 and Young's			
	modulus E = 2×10^5 N/mm ² .	12M	CO	2
_	OR			
3.				
	40 mm wide and 20 mm thick and a strip of steel 60 mm wide × 15 mm thick rigidly joined at the ends. If elastic modulus of			
	aluminium and steel are 1×10^5 N/mm ² and 2×10^5 N/mm ²			
	determine the stresses developed in each material and the			
	extension of the compound bar when axial tensile force of 60kN	4014		
	acts.	12M	CO	2

UNIT–II

4. Draw the SF and BM diagrams for the beam shown in Figure and find out the position and the magnitude of maximum moment.

5. Draw shear force and bending moment diagram for the cantilever beam shown in figure

6. A timber beam has to carry a load of 2 kN/m over a span of 3 m. The permissible stresses are 12MPa in compression and 8 MPa in tension. Design the section if the width is half of the depth.

7. Draw the shear stress variation diagram for the I-section shown in Fig. if it is subjected to a shear force of 100 kN.

12M co3

2

3

2

3

3

UNIT–IV

 A simply supported beam carries a UD load of 20 kN/m over its span of 8 m. Determine the slope at the ends and the deflection at mid-span if E=200GN/m²and *I*=30,000cm⁴. Moment- Area method

OR

9. An overhanging beam is loaded as shown in Fig. Find the deflection under the loads. *El* is constant. (All distances are in m and ordinates in kNm.)

10. On a mild steel plate, a circle of diameter 50 mm is drawn before the plate is stressed. Find the lengths of the major and minor axes of an ellipse formed as a result of the deformation of the circle marked. Poisson's ratio 0.25 and $E = 2 \times 10^2 \text{N/mm}^2$

CO5

3

3

11. Determine the shortest length for a pin-jointed steel column of cross- section 75 mm x 48 mm using Euler's formula. Take critical stress value as 220 MPa and E=205GPa.

Page **3** of **3**

CO₅