\square
II B.Tech. I Semester Supplmentary Examinations August 2022

Advanced Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BTL}$
a) Differentiate whole circle bearing and Quadrantal bearing system. 2
b) List any four uses of contour maps. 3
c) Find the height of a Tee beam above the floor level. The RL of the floor is 100.855 m and the staff reading on the floor is 2.055 m . The reading on a staff held inverted against the underside of the beam is 3.565 m .
d) With neat sketch explain elements of a simple circular curve.

5
e) List the uses of DGPS

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
2. a) List different types of cross staffs and explain their uses in surveying.
b) In passing an obstacle in the form of a pond, stations A and D, on the main line, were taken on the opposite sides of the pond. On the left of $A D$, a line $A B$, 200 m long was laid down and a second line $A C, 250 \mathrm{~m}$ long was ranged on the right of $A D$. The points B, D and C being in the same straight line. $B D$ and $D C$ were then chained and found to be 125 m and 150 m respectively. Find the length of AD.

OR

3. a) Define ranging and explain the method of indirect ranging with sketch.
6M $3 \quad 2$
b) With neat sketch illustrate intersection method of plane table survey.

UNIT-II

4. a) Following consecutive readings were taken with a level and $4 m$ staff on a continuously sloping ground at a common interval of 30 m . Reduce level of the first point was 180.750 m . Rule out a page of a level field book and enter the above readings. Calculate reduce levels of the points by collimation method. Apply Arithmetic check. Also find the difference in RL from first point to last point.

0.780	1.535	1.955	2.430	2.985	3.480	1.155	1.960	2.365
3.640	0.935	1.045	1.630	2.545				

$8 \mathrm{M} \quad 3 \quad 4$
b) Define the following terms.
(i) Face left and Face right observation
(ii) Swinging and Transiting the telescope

OR

5. a) Explain temporary adjustments of dumpy level. Write neat sketch for
three screw adjustment.
b) An embankment is 8 m wide with slopes $2: 1$. Assuming the ground to be level in a direction traverse to the center line. Calculate the volume contained in a length of 140 m . The center height at 20 m intervals being $2.3 \mathrm{~m}, 3.7 \mathrm{~m}, 3.9 \mathrm{~m}, 4.1 \mathrm{~m}, 3.7 \mathrm{~m}, 2.9 \mathrm{~m}, 2.7 \mathrm{~m}$.

6M 1

6M 4
3

UNIT-III

6. a) Explain the method of measuring horizontal angle by repetition with table for recording readings
b) Compare temporary and permanent adjustments of vernier transit

OR

7. a) List the uses of vernier micrometer
b) With the help of neat sketch enumerate fundamental lines and desired relations of a transit.

UNIT-IV

8. a) Calculate the ordinates at 10 m distances for a circular curve having a long chord of 80 m and versed sine of 4 m . And explain the procedure of setting out the same in field.
b) The stadia intercept read by means of a fixed hair instrument on a vertically held staff is 1.05 meters, the angle of elevation being $5^{\circ} 36^{\prime}$. The instrument constants are 100 and 0.3 . What would be the total number of turns registered on a movable hair instrument at the same station for a 1.75 meters intercept on a staff held on the same point, the vertical angle in this case being $5^{\circ} 24^{\prime}$ and the constants 1000 and 0.5 ?

OR

9. a) The elevation of a point P is to be determined by observations from two adjacent stations of a tacheometeric survey. The staff was held vertically upon the point and the instrument is fitted within an anallactic lens, the constant of instrument being 100. Compute the elevation of the point P from the following data, taking both the observations as equally trustworthy. Also calculate the distance of A and B from P.

Inst Station	Height of axis	Staff point	Vertical angle	Staff readings	Elevation of station
A	1.42	P	$+2^{\circ} 24^{\prime}$	$1.230,2.005,2.880$	77.750 m
B	1.40	P	$-3^{\circ} 36^{\prime}$	$0.785,1.800,2.815$	97.135 m

b) Explain the procedure of setting out a simple circular curve by offsets from tangents method with neat sketch.

UNIT-V

10. a) Explain briefly any two softwares used in survey.
b) Enumerate the advantages of total station over theodolite.

OR

11. a) Enumerate the instrumental errors in DGPS
b) List the advantages and disadvantages of Drone based survey
*** End ***
6M $3 \quad 2$

6M $5 \quad 2$
6M 24

6M 52

6M $5 \quad 2$

6M $5 \quad 2$

Fluid Mechanics and Hydraulic Engineering

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) What are root causes for viscosity of fluids?

CO1
b) Give practical examples for laminar and turbulent flow in our daily life
c) Explain the working principle of Venturimeter?

CO1
d) Draw Moody's diagram. State its use in design of pipe

CO1
e) What is meant by minimum starting speed of centrifugal pump?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Difference between (i) mass density and Weight density (ii) Newtonian fluid and Non-Newtonian fluid (ii) Ideal fluid and Real fluid
b) The space between two square flat parallel plates is filled with oil. Each side of the plate is 720 mm . The thickness of the oil film is 15 mm . The upper plate, which moves at $3 \mathrm{~m} / \mathrm{s}$ requires a force of 120 N to maintain the speed. Determine: (i) The dynamic viscosity of the oil; (ii) The kinematic viscosity of oil if the specific gravity of oil is 0.95

OR

3. a) What is centre of buoyancy? Explain the different types of equilibriums of floating body
b) A solid cylinder 2 m in diameter and 2 m high is floating in water with its axis vertical. If the specific gravity of the material of cylinder is 0.65 find its meta-centric height. State also whether the equilibrium is stable or unstable

6M CO1
L4

UNIT-II

4. a) Explain the typical characterizes of velocity potential function and stream function

6M CO2
b) In a three-dimensional incompressible fluid flow, the velocity components are: $u=x^{2}+z^{2}+5, \quad v=y^{2}+z^{2}-3$ (i) Determine the third component of velocity. (ii) Is the fluid flow irrotational?

6M CO2
5. a) How is the continuity equation based on the principle of conservation of mass stated? Derive the continuity equation in Cartesian coordinates

6M CO2
b) If the velocity field is given by $u=x^{2}-y^{2}+x$ and $v=-(2 x y+y)$, determine φ and ψ.
6. a) State assumption of Bernoulli's equation. Derive Bernoulli's equation
b) A pipe 300 meters long has a slope of 1 in 10° and tapers from 1.0 m diameter at the higher end to 0.5 m at the lower end. Quantity of water flowing is 90 litre/s. If the pressure at higher end is $70 \mathrm{kN} / \mathrm{m}^{2}$, find the pressure at the lower end.

OR

7. a) Find an expression for the discharge over a triangular notch or weir in terms of head of water over the crest of the notch or weir
b) A rectangular channel 20 m wide has a discharge of $025 \mathrm{~m}^{3} / \mathrm{s}$, which is measured by a right angled V-notch. Find the position of the apex of the notch from the bed of the channel if the maximum depth of water is not to exceed 13 m . Assume $\mathrm{Cd}=062$.

UNIT-I

8. a) Derive the Darcy-Weisbach equation for loss of head due to friction
b) Two pipes of diameters 400 mm and 200 mm are each 300 m long. When the pipes are connected in series the discharge through the pipeline is $010 \mathrm{~m}^{3} / \mathrm{s}$, find the loss of head incurred. What would be the loss of head in the system to pass the same total discharge when the pipes are connected in parallel? Take friction factor $=00075$ for each pipe.

OR

9. a) Why pipes are connected in series and parallel? State their hydraulic conditions to be satisfied.
b) An oil of viscosity 9 poise and specific gravity 0.9 is flowing through a horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of the pipe is $1800 \mathrm{kN} / \mathrm{m}^{2}$, determine: (i) The rate of flow of oil; (ii) The centre-line velocity; (iii) The total frictional drag over 100 m length; (iv) The power required to maintain the flow; (v) The velocity gradient at the pipe wall; (vi) The velocity and shear stress at 8 mm from the wall

UNIT-V

10. a) A reaction turbine works at 450 r.p.m. under a head of 120 m . Its diameter at inlet is 1.2 m and the flow area is $0.4 \mathrm{~m}^{2}$. The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine: (i) The volume flow rate, (ii) The power developed, and (iii) The hydraulic efficiency.
b) Draw a general layout of a hydroelectric power plant using an impulse turbine and define the following: (i) Gross head, (ii) Net head, (iii) Hydraulic efficiency, and (iv) Overall efficiency of the impulse turbine

OR

11. a) What is priming? Why is it necessary in centrifugal pump?
b) The impeller of a centrifugal pump has an external diameter of 400 mm and internal diameter of 180 mm and it runs at 1440 r.p.m. Assuming a constant radial flow through the impeller at $25 \mathrm{~m} / \mathrm{s}$ and that the vanes at the exit are set back at an angle of 25°, determine : (i) Inlet vane angle, (ii) The angle, absolute velocity of water at the exit makes with the tangent, and (iii) The work done per N of water

6M CO3

6M

6M CO3

6M CO3

6M CO4

6M CO4

6M CO4

6M CO5 L5

6M CO5 L2

6M CO5

6M CO5
L5
\square

Code: 20AC36T

R-20

|| B.Tech. I Semester Supplmentary Examinations August 2022

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co
a) Law of diminishing marginal utility $\mathrm{CO1}$
b) Iso-quants and iso-costs CO 2
c) Characteristics of monopolistic competition. CO 2
d) Scope of capital budgeting CO 2
e) Double entry bookkeeping CO1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Discuss the nature and scope of managerial economics.

6 M CO 2
b) Elucidate the relationship of managerial economics with other areas.

6 M CO

OR

3. a) Define demand. Explain different types of demand.

6M CO1
b) Explain the law of demand and its exceptions.

6 M CO 2

UNIT-II

4. a) Explain the determinants of cost.

6 M CO 2
b) Identify different bases of cost classification.

6 m CO1

OR

5. Explain graphically the cost-output relationship in the long-run.

12M CO3

UNIT-III

6. a) State the characteristics of an oligopoly market.

6M CO2
b) Differentiate joint stock company and cooperative society form business.
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 1$

OR

7. State the forms and functions of different types of public
sector organizations.

UNIT-IV

8. a) Discuss the sources of raising capital.

6 M CO 2
b) Explain what is profitability index. Discuss which is a superior ranking criterion, profitability index or the net present value.

12 M CO L2

6M CO3 L3

OR

9. An investment would cost 100,000 and provide annual cash inflow of ${ }^{`} 21,150$ for 6 years. If the opportunity cost of capital is 10 per cent, calculate the Net Present Value (NPV) and Internal Rate of Return (IRR) of the investment.

UNIT-V

10. a) State the accounting principles and accounting
*** End ${ }^{* * *}$
conventions.
b) "Every debit must have a corresponding credit". Explain.

OR

11. a) Define ledger. Explain its importance in accounting process.

6 M CO 2
b) For Pavani Ltd., calculate debtor's turnover ratio from the flowing information:
Sundry debtors at beginning $\quad 20,00,000$
Sundry debtors at end `12,50,000
Sales \quad '25,50,250
6M CO1 L3
6 M CO 3 L 3

6 M CO
\square
Code: 20AC31T
II B.Tech. I Semester Supplmentary Examinations August 2022

Partial Differential Equations and Numerical Methods

(Common to CE and ME)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$
a) Explain the Method of false position. CO1
b) Define forward differences. CO2
c) Write formulas for first and second derivatives using Newton's backward interpolation formula.

CO3 L3
d) Explain Euler's method to solve the IVP

$$
\frac{d y}{d x}=f(x, y) \text { with } y\left(x_{0}\right)=y_{0} .
$$

e) Write the suitable solution of one dimensional heat equation.

CO5
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Find a real root of the equation $x \log _{10} x=1.2$ by regulafalsi method correct to four decimal places.

6M CO1
b) Develop an Iterative formula to find the $k^{\text {th }}$ root of a positive number N.Using Newton-Raphson method.
$6 \mathrm{M} \mathrm{CO1}$
(OR)
3. a) Using bisection method, compute the real root of the equation $x^{3}-x-11=0$.

6M CO1 L3
b) Find a real root of the equation $2 x-\log _{10} x=7$, using iteration method.

6M CO1

UNIT-II

4. a) Evaluate $\Delta\left(e^{x} \log 2 x\right)$.
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 2$
b) Using Newton's forward formula compute $f(142)$ from the following table:

x	140	150	160	170	180
$f(x)$	3.685	4.854	6.302	8.076	10.225
(OR)					

6M CO2 L4
(OR)
5. a) Use Lagrange's interpolation formula to find the value of y when $x=10$ if the following values of x and y are given.

x	5	6	9	11
y	12	13	14	16

6 M CO 2
L3
b) Find the polynomial $f(x)$ from the following data

x	0	1	4	5
y	4	13	24	39

UNIT-III

6. a) Determine $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $x=2$ from the following data

x	0	1	2	3	4	5
y	0	1	8	27	64	125

b) Evaluate $\int_{0}^{1} x^{3} d x$ with five sub-intervals by Trapezoidal

Rule
6 M CO3 L3 (OR)
7. a) Find $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simpson's $3 / 8^{\text {th }}$ rule taking $h=1 / 6$.
b) Evaluate, $\int_{0}^{2} e^{-x^{2}} d x$ by using Trapezoidal rule and

Simpson's $\frac{1}{3}$ rd rule taking $h=0.25$.

UNIT-IV

8. a) Find $y(0.1)$ by Taylor's series expansion when

$$
\frac{d y}{d x}=x-y^{2}, y(0)=1
$$

b) Apply Runge-Kutta method of $4^{\text {th }}$ order, to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y, \quad y(0)=1$.
9. a) Given that $\frac{d y}{d x}=2+\sqrt{x y}, y(1)=1$.

Find $y(2)$ in steps of 0.2 using the Euler's method.
$6 \mathrm{M} \mathrm{CO4}$
b) Obtain Picard's second approximate solution of the initial
value problem $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0$.
6 M CO
10. Solve the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ under the conditions

$$
\begin{aligned}
& y(0, t)=0, y(L, t)=0 \text { for all } t \\
& y(x, 0)=f(x) \text { and }\left(\frac{\partial y}{\partial t}\right)_{t=0}=g(x), 0<x<L .
\end{aligned}
$$

OR

11. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)=\left\{\begin{array}{lc}
x, & 0 \leq x \leq 50 \\
100-x, & 50 \leq x \leq 100
\end{array}\right.
$$

Find the temperature $u(x, t)$ at any time.
\square
Code: 20A132T
II B.Tech. I Semester Supplmentary Examinations August 2022

Strength of Materials

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO $\underset{\substack{\text { Blooms } \\ \text { Level }}}{\text { (}}$

a) A steel bar 600 mm long and having 30 mm diameter, is turned down to 25 mm diameter for one fourth of its length. It is heated at 30C above room temperature, clamped at both ends and then allowed to cool to room temperature. If the distance between the clamps is unchanged, the maximum stress in the bar ($\alpha=12.5 \times 10^{-6}$ per C and $E=200 \mathrm{GN} / \mathrm{m}^{2}$) is CO1
b) Draw the bending diagram for a simple supported carrying concentrated load at mid span.
c) The safe stress for a hollow steel column which carries an axial load of 2100 kN is $125 \mathrm{MN} / \mathrm{m} 2$. if the external diameter of the column is 30 cm , what will be the internal diameter?
d) A simple supported beam of span I is carrying point load W at the mid span. What is the deflection at the centre of the beam?
e) A water main of 1.5 m diameter and 20 mm thick is subjected to an pressure of $1.5 \mathrm{~N} / \mathrm{mm} 2$. Calculate the circumferential stress induced in the pipe.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A circular rod of 25 mm diameter and 500 mm long is subjected to a tensile force of 60 kN . Determine modulus of rigidity, bulk modulus and change in volume if Poisson's ratio $=0.3$ and Young's modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

OR

3. A compound bar of length 600 mm consists of a strip of aluminium 40 mm wide and 20 mm thick and a strip of steel 60 mm wide \times 15 mm thick rigidly joined at the ends. If elastic modulus of aluminium and steel are $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ determine the stresses developed in each material and the extension of the compound bar when axial tensile force of 60 kN acts.

UNIT-II

4. Draw the SF and BM diagrams for the beam shown in Figure and find out the position and the magnitude of maximum moment.

12M CO2
5. Draw shear force and bending moment diagram for the cantilever beam shown in figure

12M CO2
6. A timber beam has to carry a load of $2 \mathrm{kN} / \mathrm{m}$ over a span of 3 m . The permissible stresses are 12MPa in compression and 8 MPa in tension. Design the section if the width is half of the depth.

12M Co3
7. Draw the shear stress variation diagram for the I-section shown in Fig. if it is subjected to a shear force of 100 kN .

UNIT-IV

8. A simply supported beam carries a UD load of $20 \mathrm{kN} / \mathrm{m}$ over its span of 8 m . Determine the slope at the ends and the deflection at mid-span if $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $l=30,000 \mathrm{~cm}^{4}$. Moment- Area method

12M CO4
OR
9. An overhanging beam is loaded as shown in Fig. Find the deflection under the loads. E l is constant. (All distances are in m and ordinates in kNm.)

12M CO4

UNIT-V

10. On a mild steel plate, a circle of diameter 50 mm is drawn before the plate is stressed. Find the lengths of the major and minor axes of an ellipse formed as a result of the deformation of the circle marked. Poisson's ratio 0.25 and $\mathrm{E}=2 \times 10^{2} \mathrm{~N} / \mathrm{mm}^{2}$

CO

OR

11. Determine the shortest length for a pin-jointed steel column of cross- section $75 \mathrm{~mm} \times 48 \mathrm{~mm}$ using Euler's formula. Take critical stress value as 220 MPa and $\mathrm{E}=205 \mathrm{GPa}$.
