	На	I Ticket Number :													
	Cor	le: 19A232T	I								Ţ		R-19		
		II B.Tech. I Sem	ester :		oleme i rcuit		-		inat	ion	s Jun	e 20	24		
		(Ele	ctrico				-		eerii	ng)					
	-	ax. Marks: 70 swer any five full questio	ns by c	choo	-	ne qı ****	Jestio	on fro	om e	ach	unit (ne: 3 Ho = 70 Ma		
					UNIT	- -1							Marks	со	I
1.	a)	Explain Super-Mesh with	an exa	mple									7 M	1	
	b)	Apply Current division rul	e and f	ind th	e curr	ents.	E. #								
		3	A (1	τ,`)	3-0		-2 4 -0						71.4	1	
					OF								7M	1	
2.	a)	Explain nodal analysis wi	ith an e	vamn		•							7M	1	
۷.	b)	Describe Voltage and Cu		-		with	evan	nles					7M	1	
	0)	Describe voltage and ed		13101	UNIT		CAUII	ipico.					7 1 1 1		
3.	a)	List out different types of	AC wa	vefori		••							7M	2	
-	b)	List out any five advantage				v.							7M	2	
	,				OF	-									
4.	a)	Determine the expression	n for Re	esona	nt freq	uenc	y of a	a serie	es Rl	LC ci	rcuit.		6M	2	
	b)	A coil having a resistance in series with a 50 μ F ca current (ii) the power (iii) capacitor. Draw the phas	pacitor the po	acros wer f	ss a 25 factor showin	50 V, s (iv) th g the	50 Hi ne vo	z sup Itage	ply. (acro	Calcu ss th	ulate (i ne coil) the and	8M	2	
_					UNIT										
5.		Determine the relations balanced 3-Ø star conne	-				•	•		e vol	tage t	ora	14M	3	
			cicu Sy	Stern	OF		c ula	gram	5.					0	
6.	a)	Define phase and phase	sequer	nce.	•	-							4M	3	
	b)	Calculate the line current	-		currer	nts fo	r the	follow	/ing i	netw	ork.				
		B	20010°(3	5L=120°	720130	Y	5 A							
													10M	3	

		Code	: 19A2	32T	
		UNIT-IV			
7.	a)	Explain millman's theorem with an example.	7M	4	2
	b)	Explain Telligen's theorem with an example.	7M	4	2
		OR			
8.	a)	Explain Nortorn's theorem with an example	7M	4	2
	b)	Explain Reciprocity theorem with an example.	7M	4	2
		UNIT-V			
9.	a)	Define i) graph ii) tree iii) link iv)twig	7M	6	1
	b)	Define i) link ii) Twig iii) tree iv) co-tree with a suitable diagram	7M	6	1
		OR			
10.	a)	Explain Self-Inductance and Mutual inductance.	5M	5	2
	b)	Develop an expression for equivalent inductance of two coupled coils connected in parallel aiding with mutual inductance.	9M	5	3

Code: 20A231T		
II B.Tech. I Semester Supplementary Examinations June 2024		
Electrical Machines - I		
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Ho	ours	

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks.		
3. Answer ALL the questions in Part-A and Part-B		
PART-A		
(Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M) CO	BL	
a) What is the principle of DC Generator 1	L2	
b) Define Critical Field Resistance and Critical Speed 2	L2	
c) List out the Losses of DC Machines 3	L2	
d) Why the single phase transformer will not work with DC? 4	L2	
e) Draw the Three Phase Transformer Connections. 5	L2	
PART-B		
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)		
Marks	со	BL
UNIT-I		
2. With a neat diagram, explain the constructional features of a DC generator. Explain each part of it 12M	1	L2
DC generator. Explain each part of it. 12M OR	I	LZ
3. a) Derive EMF equation of a DC Generator 6M	1	L2
b) A four pole generator having wave-wound armature winding	•	LZ
has 51 slots each slot containing 20 conductors. What will be		
the voltage generated in the machine when driven at		
1500rpm assuming the flux per pole to be 7.0mWb? 6M	1	L3
4. a) Bring out the reasons for the failure of self-excitation of a DC		
machine. 6M		L3
b) Draw and explain Load characteristics of shunt generator 6M	2	L3
OR 5. a) Draw and explain series and compound generators. 6M	0	
b) A series generator delivers 100A at 250V and the resistance of	2	L3
the series field and armature resistance are 0.055 and 0.1		
respectively. Calculate the armature current and generated		
· · · ·		L3

Code:	20A231T

		UNIT-III	2 . 20A23)	
6.	a)	Explain the principle of operation of DC Motor	6M	3	L2
	b)	Explain Swinburne's test on DC machines. Also state its		Ū	
	/	advantages & disadvantages	6M	3	L3
		OR			
7.	a)	Explain 3-point starter with a neat diagram.	6M	3	L3
	b)	A 220V DC series motor is running at a speed of 800rpm			-
	,	and draws 100A. Calculate at what speed the motor will run			
		when developing half the torque. Total resistance of			
		armature and field is 0.1 . Assume that the magnetic circuit			
		is unsaturated.	6M	3	L3
		UNIT-IV			
8.	a)	Derive an expression for the induced e.m.f of a transformer	6M	4	L2
	b)	Draw and explain the phasor diagram of the transformer			
		operating at lagging power factor load	6M	4	L4
		OR			
9.	a)	With the help of neat circuit diagram explain OC & SC test	6M	4	L2
	b)	on single phase transformers	OIVI	4	LZ
	b)	The emf per turn for a single phase transformer is 1.1 V. When the primary winding us connected to a 220 V 50 Hz			
		A.C. supply, the secondary voltage is found to be 550 V.			
		Calculate: (i) The number of primary and secondary turns.			
		(ii) The net cross-sectional area of the core, for a maximum			
		flux density of 1.1 T.	6M	4	L3
		UNIT-V			
10.	a)	What is an auto transformer? What is the difference between	6M	_	
	ь)	auto transformer and two winding transformer?	6M	5	L3
	b)	A two-winding transformer is rated at 2400/240V, 50KVA. It is reconnected as a step-up auto-transformer, with 2400V			
		input. Calculate the rating of the autotransformer and the			
		inductively and conductively transferred powers while	~ ~ ~		
		delivering the rated output at unity power-factor.	6M	5	L3
		OR			
11.		Explain in detail about Scott Connection with neat	4014		
		sketch and related phasor diagrams	12M	5	L4
		*** End ***			

Hall Ticket Number :	R-20		
Code: 20A232T			
II B.Tech. I Semester Supplementary Examinations Ju Network Analysis and Signals	Jne 2024		
(Electrical and Electronics Engineering)			
Max. Marks: 70	Time: 3 H	ours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks.			
 Answer ALL the questions in Part-A and Part-B PART-A 			
(Compulsory question)			
Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$,	CO	BL
 Define transfer admittance and impedance of two port networ 	k	CO1	L1
b) Find L[t(sin2t)]		CO3	L3
) What are the initial conditions for Resistor?			L1
 d) Define unit impulse and unit step signal 		CO4	L1
e) Find Fourier Cosine integral representation of the function f (
PART-B	= 0, x >1	CO5	L3
Answer <i>five</i> questions by choosing one question from each unit (5 x	12 = 60 Marks)		
	Marks	CO E	BL
UNIT-I			
2. a) Find the Z- parameters for the following circuit. 3Ω			
° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
່≷2Ω ຊັ່5Ω			
b) Everges ABCD personators in terms of h personators		CO1 L	
 b) Express ABCD parameters in terms of h parameters OR 	IVIC	CO1 L	L3
3. a) Find the ABCD parameters for the following circuit.			
2Ω 3Ω			
<u> </u>			
≩6Ω			
°C	7M	CO1 L	L3
b) Express Y parameters in terms of h parameters.		CO1 L	
UNIT-II			
4. Find the signal y(t), the Laplace transform of signal wh	ich is		
$Y(S) = (S^{3}+7S^{2}+18S+20) / (S^{2}+5S+6)$	12M	CO3 L	L4
OR			

		Coc	de: 20A	232Т	
5.		A 500 resister, a 16Mh inductor, and a 25 nF capacitor are connected in parallel which is placed in series with a 2000 resistor. Express the impedance of this series combination as a rational function of s.	12M	CO3	L4
6.		A series RL circuit with R=30 and L=15H has a constant			
0.		voltage V=60V applied at t=0. Determine the current I, the voltage across the resistor and across the inductor.	12M	CO2	L3
7.		Derive the transient response of an RLC circuit with dc excitation.	12M	CO2	L4
8.	,	With neat graphical representation explain different types of continuous time signals with examples. Draw the signal $x(t) = 1$; 0 <t<1 2; 1<t<2< td=""><td>6M</td><td>CO4</td><td>L2</td></t<2<></t<1 	6M	CO4	L2
		0; elsewhere also determine and sketch (i) x(2t) (ii) X(3t-1) OR	6M	CO4	L3
9.	a)	Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.			
		(a) $x(t) = \cos\left(t + \frac{\pi}{4}\right)$ (b) $x(t) = \sin\frac{2\pi}{3}t$			
		(c) $x(t) = \cos \frac{\pi}{3} t + \sin \frac{\pi}{4} t$ (d) $x(t) = \cos t + \sin \sqrt{2} t$	6M	CO4	L3
	b)	power signals and neither power nor energy signals. i) $x(t) = e^{-3t}u(t)$ ii) $x(t) = cost$ iii) $x(t) = t u(t)$	6M	CO4	L1
10	a)	UNIT-V Explain even, odd and half wave symmetry property by			
10.	b)	using relevant examples. Express the Trigonometric Fourier series expansion of the waveform shown in fig.	6M	CO5	L2
		$f(t)$ 1 1 0 2π 4π 6π $\omega t(rad)$	6M	CO5	L3
11	a)	OR State and prove the convolution theorem for Fourier Transforms.			
	a) b)		6M	CO5	L4
	~)	$x(t) = 1 + \cos(2 t)$ *** End ***	6M	CO5	L3

	Н	all Ticket Number :]	
	Co	de: 20A234T	R-20		
	CU	Il B.Tech. I Semester Supplementary Examinations June 2 Switching Theory and Logic Design (Electrical and Electronics Engineering)	2024		
	Ма	x. Marks: 70	Time: 3 H	lours	
	Not	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
	1.	(Compulsory question) Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$		со	BL
		Represent $(5137)_{10}$ in Gray code	,		L3
	,	Write the POS form of the SOP expression			
	,	f(x,y,z) = x'yz + xyz' + xy'z	(002	L3
	c)	How will you decide the size of a PLA array?	(203	L4
	d)	Define critical race in asynchronous sequential circuit.	C	04	L1
	e)	Define a state box.	(005	L1
		<u>PART-B</u>	(0) /1 `	,	
		Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 0$	Marks	, co	BL
		UNIT-I			
2.	a)	Find out X and Y. (537.25)_8 = (X)_2 , (1A5B)_{16} = (Y)_8	6M	CO1	L3
	b)	Device a single error correcting code for a 11- bit group 01101110101.		CO1	L3
		OR			
3.	a)	What is Hamming code? How is the Hamming code word tested and corrected?		CO1	L2
	b)	Find the 1's complement and 2's complement of (101101) and (111101) ₂ .		CO1	L3
4.	a)	UNIT-II Find the simplified Boolean function for the given function using K-map and implement it using logic gates. F (A, B, C, D) = m (0, 8, 11, 12, 15) + d (1, 2, 4, 7, 10, 14).			
		Give the essential prime implicants	6M	CO2	13
	b)	Implement the function $F = B' D + A C$ using only NAND gates		CO2	
	- /	OR		002	20
5.	a)	Simplify the following Boolean expressions to a minimum number of literals. (i) $(A' + C') (A + B' + C')$		CO2	L3

	b)	Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-minterms form:			
		F(w,x, y,z) = m(0, 6, 8, 13, 14), d(w,x,y,z) = m(2,4,10)	8M	CO2	13
		UNIT-III	om	002	LU
6.	a)	Design a full adder using $4x1$ multiplexer, also write its truth table and draw the logical diagram.	6M	CO3	15
	b)	Discuss the different types of Programmable logic devices.		CO3	
7.	a)	Consider the following boolean functions and implement the circuit using PLA. F1=AB'+AC+A'BC' $F2=(AC+BC)'$	8M	CO3	L3
	b)	Mention the application of flash memory devices.		CO3	
8.	a)	A sequential circuit with two D flipflops A and B, one input x and one output y is specified by the following equation			
		$D_A = A.x' + B.x$ $D_B = A'.x$ and output $y = (A + B).x'$ Draw the sequential circuit, state table and state diagram for the given specifications.	8M	CO4	15
	b)	Represent the logic circuit of a synchronous up counter.		CO4	
		OR			
9.	a)	Design and explain the working of a ripple 3 bit binary down counter.	8M	CO4	L5
	b)	Analyze the characteristic table and excitation table of T flipflop.	4M	CO4	L4
		UNIT-V			
10.		Draw an ASM chart, state diagram and state table for the synchronous circuit having the following description:The circuit has control input C, clock, and outputs x, y, z.			
		(a) If $C = 1$, on every clock rising edge, the code on the output x, y, z changes from 001 011101111001 and repeats. (b) If $C = 0$, the circuit holds the present state. OR	12M	CO5	L5
11.	a)	Draw the ASM chart for a sequence detector to detect the sequences 1011 and 1101. It has to output a 1 when the	4014		
	ل ا	sequence is detected. Overlapping is not permitted. Differentiate between ASM chart and conventional flow chart.	10M 2M		
	b)	*** End ***	ZIVI	CO5	L4

Hall Ticket Number :			
Code: 20AC32T	R-20		
II B.Tech. I Semester Supplementary Examinations June 2 Transform Techniques & Complex Variables (Common to EEE &ECE)	2024		
Max. Marks: 70	Time: 3 H	lours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u>			
(Compulsory question) 1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)		со	BL
a) Find Laplace transform of tcosat.		CO1	
b) Find the inverse transforms of $\frac{s+2}{(s^2-4s+13)}$		CO2	L2
c) Find a_0 in the expansion of $f(x)=xsinx$.		CO3	L4
d) Evaluate using Cauchy's integral formula $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} d^{z}$, whe	ere C is		
the circle z =3.		CO4	L2
e) Find the nature and location of singularities of 1/ (cosz-sinz).		CO5	L3
PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 0$	60 Marks))	
UNIT–I	Marks	CO	BL
2. a) Find the Laplace transform of f(t) = $\begin{cases} \frac{t}{\tau}, & \text{when } 0 < t < \tau \\ 1, & \text{when } t > \tau \end{cases}$	6M	CO1	L3
 b) Find the Laplace transform of the triangular wave of period 2a given by 			
f(t) =t, 0 <t<a =2a-t, a<t<2a.< td=""><td>6M</td><td>CO1</td><td>L1</td></t<2a.<></t<a 	6M	CO1	L1
OR			
3. a) $Evaluate L_{\{t \ J_{o} \ e^{-t} e^{-t} e^{-t} dt\}}$ b) Find L(t_{etat}^{e} $L_{\{t \ J_{o} \ e^{-t} e^{-t$	014		
$= \{t \text{ for } \frac{dt}{t} = dt\}$		CO1	
b) Find L(t_{etat})	6M	CO1	L1

	UNIT-II			
4.	Find the inverse transforms of $\frac{12 - 11}{\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}}$	12M	CO2	L3
	OR			
5.	Solve ty"+2y+ty=cost given that y(0)=1	12M	CO2	L3
	UNIT–III			
6.	Obtain the Fourier expansion of xsinx as a cosine series in (0,).	12M	CO3	L4
	OR			
7.	Find the Fourier cosine transform of $f(x)=1/(1+x^2)$.	1014		
	Hence derive Fourier sine transform of $(x) = x/(1+x^2)$.		CO3	L1
8. a)	UNIT-IV If = +i re the complex potential for an electric			
	If = +i re the complex potential for an electric field and $=_{x^2 - y^2}^{y^2 + x_2 + y_2}$, determine the function .	6M	CO4	L1
b)	If F() = $\int_{-\infty}^{\infty} \frac{4z^2 + z + 5}{z - \zeta} \frac{4z^2 + z + 5}{z - \zeta} \frac{4z^2 + z + 5}{z - \zeta} dz$, where			
	$(x/2)^{2}+(y/3)^{2}=1$, find the value of F(3.5).	6M	CO4	L2
	OR			
9.	Evaluate $\int_{c} \frac{1}{(z^2 + \pi^2)^2} dz$, where c is $ z =4$ by using Cauchy Integral formula	12M	CO4	L2
	UNIT–V			
10.	Find the Laurents' expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the			
	region 1 <z+1<3.< td=""><td>12M</td><td>CO5</td><td>L2</td></z+1<3.<>	12M	CO5	L2
	OR			
11.	Evaluate $\int_{c} \frac{\sin \pi z^{2} + c \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz$, where 2 is the circle $ z =3$			
	by using residue threorem.	12M	CO5	L2
	*** End ***			

	Hall	Ticket Number :			
L	Cod	e: 20A233T	R-20		
	000	II B.Tech. I Semester Supplementary Examinations June	2024		
		Analog Electronics			
	Max	(Electrical and Electronics Engineering) . Marks: 70	Time: 3 H	ours	
	i i an	******		0010	
	Note	: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
		(Compulsory question)			
		ver all the following short answer questions $(5 \times 2 = 10M)$		CO	BL
,		e the Barkhausen criterion for an oscillator.		1	L1
,		the ideal characteristics of op-amp.		2	L1
-		w and explain op-amp based zero detector circuit.		3	L2
(k	Exp	lain the importance of control voltage pin 5 of the timer 555		4	L1
,		at is the advantage of R-2R ladder D/A converter over the	one with		
	bina	ry weighted resistors?		5	L2
	۸n	<u>PART-B</u> swer <i>five</i> questions by choosing one question from each unit (5 x 1	2 – 60 Mark	с)	
	AII	swer rive questions by choosing one question nom each unit (5 x 1	Z = 00 Marks	-	BL
		UNIT–I			
2.	a)	What are the different types of feedback amplifiers? Gir	ve		
		their equivalent circuits	6M	1	L2
	b)	Compare positive feedback and negative feedback.	6M	1	L2
		OR			
3.	a)	Explain the working of a Colpitts oscillator.	6M	1	L2
	b)	In an RC Phase shift oscillator, R=200k nd C=200p	F.		
		Find the frequency of the BJT based oscil	6M	1	L3
		UNIT–II			
4.		Draw the internal block diagram of op-amp and expla			
		each block	12M	2	L2
		OR			
5.		List any five DC characteristics of OP-AMP and Explain.	12M	2	L2
_		UNIT-III			
6.	a)	Compare and contrast Schmitt trigger and Comparator.	6M	3	L3
	b)	Explain how op-amp can work as Astable multivibrator	6M	3	L3
		OR			

7. a)			
	using op-amp	6M	3 L2
b)	With a neat diagram explain the working of op-amp		
	comparator.	6M	3 L2
UNIT-IV			
8.	Derive the expression for the Duty cycle of an Astable		
	Multi-vibrator using IC555.	12M	4 L3
OR			
9. a)	How PLL is used for frequency multiplier? Explain.	6M	4 L2
b)	Compute the free running frequency fo, lock in range and		
	capture range of PLL 565. Assume RT=20 k-ohm,		
	CT=0.01 μ F, C=1 μ F and supply voltage is ±6v.	6M	4 L3
	UNIT–V		
10. a)	Draw the circuit diagram of binary-weighted resistor DAC		
	and explain its working.	6M	5 L2
b)	For the D/A converter using an R-2R ladder network,		
	determine the size of each step if $Rf = 27k$ and $R= 10k$		
	and also calculate the output voltage when the inputs b0,		
	b1, b2 and b3 are at 5V.	6M	5 L3
OR			
11. a)	Describe Parallel Comparator type ADC operation.	6M	5 L2
b)	Discuss the operation of counter type ADC.	6M	5 L2
	*** End ***		