Code: 20A231T

II B.Tech. I Semester Supplementary Examinations July 2023
Electrical Machines - I
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Brief about the types of armature windings of a DC Motor 1 L1
b) Draw the load characteristics of a DC Separately Exited Generator 2 L4
c) Write the swinburne's test on DC machine 3 L1
d) Write equation of Regulation of a Transformer 4 L3
e) What is the need of connecting transformers in parallel $5 \quad$ L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. A 500 V wave wound 750 rpm dc shunt generator supplies a load Of 195 A. The armature has 720 conductors and shunt field resistance is 100 ohms. Find the demagnetizing AT/ pole if the brushes are advanced through 3 commutator 10:34 AMsegments at this load. Also calculate the extra field turns required to neutralize this demagnetization.

OR

3. Draw and explain the following characteristics Of dc generators
a) No-load and load magnetization characteristics
b) External and Internal characteristics

UNIT-II

4. a) A 4-pole generator has a lap-wound armature with 50 slots with 16 conductors per slot. The useful flux per pole is 30 m Wb , determine the speed at which the machine need to be rotated to have an induced EMF of 200V.

6M 2 L4
b) Define voltage regulation and its importance 6M $2 \mathrm{L4}$

and without equalizer bar
 UNIT-III

5. Explain the parallel operation of dc compound generator with
6. The Hopkinson's test on two similar DC machine gave the following full load data: Line Voltage=110V Field currents are $3 \mathrm{~A} \& 3.5 \mathrm{~A}$
Line current=48 A Armature resistance of two machines are 0.07 Ohms Motor armature current $=230 \mathrm{~A}$

Calculate the efficiency of each machine assuming brush contact drop of 1.5 Volts/Brush

12M 3 L1

OR

7. Draw and explain speed-torque characteristics of shunt and compound motor and list their application

12M 3 L1

UNIT-IV

8. a) Draw and explain the phaser diagram of a transformer on resistive load

6M 4 L4
b) Explain the functions of following in a transformer
i) Breather
ii) Conservator
iii) Oil
iv) Relay OR
9. Write a short notes on All-Day efficiency of a transformer $\begin{array}{lllll} & 12 \mathrm{M} & 4 & \mathrm{~L} 3\end{array}$
10. a) Explain about the Scott connection of transformer with net diagram

6M
b) Write the comparisons for two winding transformer and auto transformer

6M
5 L4

OR

11. a) Derive expression for the saving of copper for auto transformer

6 M 5 L 3
b) Draw the three phase transformer connections with neat diagram
$6 \mathrm{M} \quad 5 \mathrm{L3}$

Code: 20A232T
II B.Tech. I Semester Supplementary Examinations July 2023

Network Analysis and Signals

(Electrical and Electronics Engineering)
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$

CO BL
a) What is the Condition for Reciprocity of Z and Y Parameters CO1 L1
b) List out the applications of Laplace transform CO2 L2
c) Define i)Steady State ii)Transient State CO3 L1
d) What is the concept of Convolution CO4 L1
e) Write a short notes on Fourier series.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Find the Z Parameters for the network shown below.

b) Derive the Y parameters in terms of Z Parameters.

6M CO1
$6 \mathrm{M} \mathrm{CO1}$
OR
3. a) Find the Y parameters for the given Π network and write the current equations

b) What is the condition for symmetry and condition for reciprocity of ABCD parameters

UNIT-II

4. a) Write the Laplace transforms of following signals.

- unit step • exponential • sinusoids
$4 \mathrm{M} \quad \mathrm{CO} 2$
L2
b) Find the inverse Laplace transform of

$$
F(s)=\frac{s^{2}+s+1}{s^{3}+s}
$$

b) Discuss the following.
i)Disadvantages of Laplace transform ii)Properties of Laplace transform

6 M CO 2

UNIT-III

6. a) Discuss the DC Response of RL Series circuit and derive the expression for current.
b) Consider the circuit shown below. The switch was in closed position for a long time. It is opened at time $t=0$. Find the current $i(t)$ for $t>0$.

OR
7. a) A series RC circuit has a constant voltage of E, applied at time $t=0$ as shown in Fig. below. The capacitor has no initial charge. Find the equations for i, vR and vC . Sketch the wave shapes.

$$
\begin{aligned}
& \mathrm{E}=100 \mathrm{~V} \\
& \mathrm{R}=5000 \Omega \\
& \mathrm{C}=20 \mu \mathrm{~F}
\end{aligned}
$$

b) Derive the current expression in RC series circuit excites by constant DC voltage Source after closing the switch at $\mathrm{t}=0$

6M CO3 L4
UNIT-IV
8. a) With neat graphical representation explain different types of continuous time signals with examples.

6 M CO4 L2
b) Find the convolution of the following signals
$\mathrm{x} 1(\mathrm{t})=\mathrm{e}-3 \mathrm{tu}(\mathrm{t})$ and $\mathrm{x} 2(\mathrm{t})=\mathrm{u}(\mathrm{t}+3)$.
6M CO4

OR

9. a) Draw the signal $x(t)=1 ; 0<t<1$

$$
\begin{aligned}
& 2 ; 1<t<2 \\
& 0 ; \text { elsewhere }
\end{aligned}
$$

also determine and sketch (i) x (2t) (ii) $\mathrm{X}(3 \mathrm{t}-1)$
6 M CO
b) State and prove properties of Cross-correlation function.

6 M CO

UNIT-V

10. a) Find the Fourier series of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2},-{ }_{m}=\mathrm{x}<$,

6M CO5
b) Explain the properties of Fourier Transform

OR

11. a) Find the Fourier series of the periodic function $f(x)$, such that

$$
f(x)=\left\{\begin{array}{cl}
-\pi & , \text { when }-\pi<x<0 \\
x & \text { when }-0<x<\pi
\end{array}\right.
$$

6M CO5
b) Explain even, odd and half wave symmetry property by using relevant examples.
$6 \mathrm{M} \mathrm{CO5}$ L2
\square
Code: 20A234T
II B.Tech. I Semester Supplementary Examinations July 2023
Switching Theory and Logic Design
(Electrical and Electronics Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Solve $A B+A^{\prime} C+B C=A B+A^{\prime} C$ and represent which theorem. CO1 L3
b) Explain about don't cares? CO2 L2
c) Define Multiplexer. Explain in brief about 2:1 Mux. CO3 L1
d) Differentiate between latches and flipflops. $\mathrm{CO} \quad$ L2
e) List the limitations of finite state machines. CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)
Marks CO BL

UNIT-I

2. a) Simplify and realize the following Boolean expression using logic gates. $Y=A B+A^{\prime} C+B C$

6M CO1 L2
b) Simplify and realize the following Boolean expression using logic gates $Y=\left(A+B^{\prime}+C^{\prime}\right)\left(A+B^{\prime}+C\right)$
$6 M^{\text {co1 }} \mathrm{L2}$

OR

3. a) Convert the given Gray code number to equivalent binary 001001011110010.

6M CO1 L4
b) Convert (A0F9.0EB) ${ }_{16}$ to decimal, binary, octal.

6M CO1 L4

UNIT-II

4. a) Simplify the following Boolean function using Tabular method. $\quad F(A, B, C, D)=\sum m(0,1,2,5,7,8,9,10,13,15)$
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 3$
b) Reduce the expression using K-map

$$
\sum \mathrm{m}(0,1,4,5,7,9,11,15)+\mathrm{d}(10,14) .
$$

6M CO2 L3

OR

5. a) Simplify the Boolean function F using the don't care conditions d, in (i) sum of products and (ii) product of sums.

$$
F=A^{\prime} B^{\prime} D^{\prime}+A^{\prime} C D+A^{\prime} B C d=A^{\prime} B C^{\prime} D+A C D+A B^{\prime} D^{\prime}
$$

b) $F(A, B, C, D)=\pi \max [5,8,14]+d \pi[7,11,12,13,15]$. Obtain minimal sop function.

6M CO2 L4

UNIT-III

6. a) Briefly describe about the programmable array logic with suitable diagrams.
$6 \mathrm{M} \mathrm{CO3} \mathrm{L2}$
b) Implement the following Boolean function with a multiplexer,

$$
\text { i) } F(A, B, C, D)=\Sigma(1,2,5,8,6,10,12,14)
$$

ii) $F(A, B, C, D)=\sum(1,2,5,6,12)$
$6 \mathrm{M} \mathrm{CO3}$ L4
OR
7. a) List the merits and demerits of PROM, PAL and PLA.
$6 \mathrm{M} \mathrm{CO} ~ \mathrm{~L} 1$
b) Implement $f(A, B, C, D)=\Sigma(0,1,3,5,6,8,9,11,12,13)$ using $8: 1$ MUX and explain its procedure.

6 M CO3 L4

UNIT-IV

8. a) Design and explain a synchronous MOD-12 down-counter using j-k flipflop.
b) What do you mean by triggering? Explain the various triggering modes with examples.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L5}$

OR

9. a) Draw the logic diagram of a JK flip flop and using excitation table. Explain its operation.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Draw the circuit diagram of Johnson counter using D-flipflops and explain its operation with the help of bit pattern.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$

UNIT-V

10. a) Draw the state diagrams of a sequence detector which can detect 101.

6 M CO5 L3
b) Illustrate partition techniques in sequential circuits.

6 M CO5 L3

OR

11. a) Explain the procedure for state minimization using merger graph and merger table

4M CO5 L2
b) Convert the following Melay machine into a corresponding Moore machine.

Present State	Input, $\mathrm{X}=0$ Next state, output	Input, $X=1$ Next state, output
A	B, 0	E, 0
B	E,0	D, 0
C	D, 1	A,0
D	C, 1	E,0

\square
Code: 20AC32T
II B.Tech. I Semester Supplementary Examinations July 2023

Transform Techniques \& Complex Variables

(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$

UNIT-I

2. a) Find $L\left(j 0^{t} \frac{t-\sin ^{2 t}}{t} d t\right)$
b) Apply Laplace transform and evaluate $\int_{0}^{\circ-\frac{s i n}{s t}} d t$

6M $1 \quad 2$ 6M 1

OR

3. a) Find Laplace transform of

$\infty \in$
6M $1 \quad 2$
 $\frac{\cos }{\sqrt{t}}$
6M 13

UNIT-II

4. a) Find inverse Laplace transform of $\frac{1}{\sqrt{2 s-3}}$
b) Apply convolution and find $\xlongequal{\frac{N}{2 m} \mathrm{c}^{1} \sqrt{\sqrt{2}} \frac{1}{5-\sqrt{3}}}$
$\operatorname{sim}^{-1}\left[-\overline{\left.s^{2}+a z^{2}\right)(s \overline{2}+b \overline{2})}\right]$.
6M 2
OR
5. a) Find ${ }_{L^{-1}\left[\frac{2}{2} \frac{S-5}{-\frac{s}{2}}{ }^{2}\right]}$

6M 23

UNIT-III

6M $3 \quad 3$
b) Using Fourier sine integral show that

$$
\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)} d \lambda=\frac{\pi}{2\left(b^{2}-a^{2}\right)}\left(e^{-a x}-e^{-b x}\right)
$$

$a, b>0$
6M $3 \quad 3$

OR

7. a) $\underset{\text { Find the }}{a, b>0} F_{\text {ourier Sine transforn }}{ }^{\text {i }}$ and Fourier Cosine transform of $f_{\text {Find }}(x) 2_{r}^{e-5 x}+5^{e-2 x}$.

6M $3 \quad 3$
b) Find the half $+5 e^{-}$cosine series $\rho f(x)=\left(x^{\text {etrel }}\right)^{2}$ or in

UNIT-IV

 origin although Cauchy-fímanin equations are satisfied at that point.

6M 43

 in the parametric form.

6M $4 \quad 3$

OR

9. a) Find the analytic function $f(z)=u+i v$ if $u-v=e^{x}(\cos y-\sin y)$
 integral formula

6M 43

UNIT-V

 region $\left.\right|^{z \mid<1}$

6M
53
b) Apply Cauchy's resid ${ }_{\text {ue th }}$ eol $L_{\text {em, }}$, evaluate $\oint_{c} \bar{z}^{\frac{2}{2}+2 z+5} d z$
where c is the circle $\left.\right|^{z+1}+i=1=2$.

6M 43

OR

$6 \mathrm{M} \quad 5$
3
11. a) Expand ${ }_{f}^{\operatorname{tr}}\left({ }^{\mathbf{z}}\right)=\frac{-\left(\frac{z}{z}\right.}{\mathbf{z}^{-}\left(\frac{z}{z^{2}}-\mathbf{z}-2\right)}$ in power series of z where
 6M $5 \quad 3$
b) Find thie residues of $f(z)=\frac{\left.\sin \pi z^{2}+\frac{\operatorname{coss} z^{2}}{(z-1}\right)^{2}}{(z-2)}$ and evaluate $j_{\boldsymbol{c}} \boldsymbol{f}_{\left(z_{i}\right)} \boldsymbol{d z}$ where c is $|z|=3$.

Hall Ticket Number :										

Code: 20A233T

R-20

II B.Tech. I Semester Supplementary Examinations July 2023

Analog Electronics

(Electrical and Electronics Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) List the advantages of negative feedback. CO1 L1
b) What are log amplifiers? CO2 L2
c) Draw the hysteresis curve for a Schmitt trigger circuit. $\mathrm{CO} \quad \mathrm{L} 1$
d) Mention the uses of PLL. CO L2
e) Compare the weighted resistor DAC and R-2R ladder DAC. CO5 L2

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Explain the Colpitts Oscillator and derive the expression for frequency.

OR

3. a) Explain the working of crystal oscillator and write the expression for frequency.
b) Design a RC phase shift oscillator for a frequency of 300 Hz .

UNIT-II

4. a) Explain the Differentiator circuit using OpAmp and obtain the expression for output
b) Design the same to obtain an output expression $\mathrm{V}_{0}=-\left(2 \mathrm{~V}_{1}\right.$ $+3 \mathrm{~V}_{2}+\mathrm{V}_{3}$).

6M CO2 L6

OR

5. Explain the operation of an instrumentation amplifier using three OpAmps and derive and expression for the output. 12 M CO2 L2
UNIT-III6. Explain the working of a positive and negative clipperusing opamp using neat waveforms.12M CO3 L2
OR
6. a) With neat circuit diagram and waveform explain a full wave rectifier. $6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Design a Schmitt trigger circuit with UTP $=4 \mathrm{~V}$, LTP $=-2 \mathrm{~V}$and $\mathrm{V}=12 \mathrm{~V}$.
6M CO3 L6
UNIT-IV8. Explain the operation of an astable multivibrator using 555timer IC and design one to generate a clock of 2 KHz andduty cycle 60%.12M CO4 L2
OR
7. a) Explain about astable multivibrator using OpAmp and write the expression for pulse width. 6 M CO4 L2
b) Explain the basic principle of PLL. 6M CO14 L2
UNIT-V
8. a) Explain the R-2R ladder type DAC.6 M CO5 L2b) Explain the working of dual slope ADC.6 M CO5 L2
OR
9. Explain the SAR ADC. 12M CO5 L2
