Hall Ticket Number :	R-20)
Code: 20A232T II B.Tech. I Semester Supplmentary Examinations Augus Network Analysis and Signals	† 2022	
(Electrical and Electronics Engineering) Max. Marks: 70	Time: 3 I	Hours
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)		
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO	Blooms Level
a) List the dependent and independent variables of transmis	sion	
parameters in terms of network parameters.	1	L1
b) State final value theorem.	2	2 1
c) Define time constant.	3	3 1
d) Define unit impulse function.	2	↓ 1
e) Define odd function symmetry.	5	5 1
PART-B		`
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	= 60 Marks)
	Marks	CO Bloor
UNIT–I		
. a) Determine the relation between A, B, C, D and parameters.	z 5M	1
b) The following equations refer to a two port network: $V_1 = 5 I_1 + 2 I_2$ $V_2 = 2 I_1 + I_2$		
A load resistance of 3 is connected across port terminals. Determine the input impedance.	2 7M	1
OR		
. a) Determine the relation between hybrid and z parameters.	5M	1
 b) Determine the A,B,C,D parameters of the circuit show below: 	/n	
252		
Nor		

7M 1 3

Code: 20A232T

	UNIT–II			
4. a)	Derive the Laplace transform of cos t.	6M	2	6
b)	circuit.	6M	2	3
	OR			
5. a)	Derive the Laplace transform of exponential function.	6M	2	6
b)	Apply Laplace transform concept to simple R-C series circuit.	6M	2	3
	UNIT-III			
6.	Analyze the response of series R-L-C circuit when excited by sinusoidal voltage.	12M	3	4
7.	Analyze the response of series R-C circuit when excited by a dc voltage.	12M	3	4
8.	Explain the classification of discrete time signals. OR	12M	4	2
9.	Explain the concept of convolution of signals.	12M	4	2
10.	Evaluate the Fourier series of a triangular waveform.	12M	5	5
	OR			
11.	What is a Fourier series? Explain the half wave symmetry of the series.	12M	5	2

	На	III Ticket Number :			
	Car	de: 20A231T	R-20		
		II B.Tech. I Semester Supplmentary Examinations August 20	022		
		Electrical Machines - I			
	N 4.	(Electrical and Electronics Engineering) ax. Marks: 70	ime: 3 H		
	1010	4X. MURS. 70 I	IIIIe. 5 II	OUIS	
	Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
		(Compulsory question) 1. Answer all the following short answer questions (5 X 2 = 10M)	CC	В	looms
		What is the purpose of commutator in DC machines?			_evel
	,	Define critical speed of a DC machine?		1	1
	,	What is the significance of field test on DC machines?		2	4
	,	0		3	3
		What is the effect of frequency variation on iron losses?		4	3
	e)	What is the use of tertiary windings in three phase transformer	5!	5	2
		PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$	Marks)		
			Marks	со	Blooms Level
		UNIT–I			Level
)		Draw a neat sketch of DC generator. State the functions of	f		
		each part?	12M	1	1
		OR			
8.	a)	What is armature reaction? Describe the effects of armature			
		reaction on the operation of DC machines	6M	1	1
	D)	Explain the process of commutation in DC machines and	a 6M		
		describe the methods to improve it?	OIVI	1	1
-	a)	What are the different types of DC generators according to)		
		the ways in which the fields are excited? Show the			
		connection diagram of each type?	12M	1	1
		OR			
)_	a)	With neat circuit diagram, explain how the magnetization	۱		
		characteristics can be obtained for self-excited DC machine?	8M	2	4
	b)	What is the critical field resistance of a DC shunt generator?			
		What is its significance?	4M	2	4
•	\sim	UNIT-III UNIT-III			
	a)	Explain what is back EMF and it's significance in a DC motor?	, 4M	3	3
				ა	3

		Coc	de: 20A2	231T	
	b)	What is the necessity of starter for a DC motor? Explain, with a neat sketch, the working of a 3 point DC shunt motor starter, bringing out the protective features incorporated in it? OR	8M	1	1
7.	,	Describe Swinburne's test with the help of a neat circuit diagram to find the efficiency of a DC machine? A 200V.14.92 KW DC shunt motor when tested by Swinburne's	6M	3	3
	D)	method gave the following test results. Running light: Armature current=6.5A, Field current=2.2A			
		Aramture locked: The current was 70A when a potential difference of 3V was applied to the brushes. Estimate the efficiency of the motor when working under full load conditions?	6M	3	3
8.	a)	Develop the phasor diagram of a single phase transformer under loaded condition. Assume lagging power factor load?	6M	4	3
	b)	Develop the exact equivalent circuit of a single phase transformer. From this derive the approximate and simplified equivalent circuits of the transformer. State the various			
		assumptions made?	6M	4	3
9.	a)	OR Explain Sumpner's test for testing two single phase transformers. Also explain why this method is beneficial to find the efficiency of transformers?	6M	4	3
	b)	The full load copper loss and iron losses of a 15 KVA single phase transformer are 320W and 200W respectively. Calculate the efficiency of the transformer on			
		i) Full load ii) Half load. Assume the power factor as 0.8 lagging.	6M	4	3
10.	,	What is an auto transformer? State it's merits and demerits over the two winding transformer?	6M	4	3
	b)	Draw the Scott connection of transformers and mark the terminals and turn ratio. What are the applications of Scott connection?	6M	5	2
11.	a)	OR Describe briefly the essential and desirable conditions to be fulfilled for operating two three phase transformers in			
		parallel?	6M	5	2
	b)	Draw schematically how a three phase transformer can be phased in with another three phase transformer?	6M	5	2

Hall Ticket Number :					٦
Code: 20A234T			R-20)	
	ter Supplmentary Examinat	ions August 2	022		
	ching Theory and Logic De	-			
(Elec Max. Marks: 70	trical and Electronics Enginee	• /	Time: 3	Hour	S
Note: 1. Ouestion Paper consi	sts of two parts (Part-A and Par	t-B)			
2. In Part-A, each quest	ion carries Two mark.	• _)			
3. Answer ALL the que	estions in Part-A and Part-B PART-A				
	(Compulsory question)				
1. Answer all the follow	ing short answer questions	(5 X 2 = 10N	И) С	o E	Blooms Level
a) What is the necessit	y of binary codes in compute	ers?	С	01	L1
b) What are the advant	ages of tabulation method or	ver K-map?		02	L1
,	DEMUX and truth table.			03	L1
d) What is meant by ra				04	L1
e) Write the capabilities	s and limitations of finite state	e machines.	С	O5	L1
Answer five questions by	PART-B choosing one question from each	unit (5 x 12 – 6() Marke)	
Answei jive questions by	choosing one question nom each	$\operatorname{unit}\left(\left(J\times 12-0\right) \right)$	Marks	, co	Blooms Level
	UNIT–I				Level
2. a) Distinguish between	weighted and non-weighted	ed codes with			
examples.			6M	CO1	L2
,	ge of 2's complement repr				
•	n the following operation	•			
complement method	: (i) (+55) - (+15) (ii) (-55)	- (-15)	6IVI	CO1	L1
2 a) Ctata duality theorem	OR		CN4		
	n. List Boolean laws and th sion AB' + A'B=C. Show tha			CO1	L1
b) Given Boolean expres			6M	CO1	L3
	UNIT–II				
4. a) Simplify the following	ng Boolean function usir	ng tabulation			
method. Y (A, B, C, I	D) = (0, 1, 3, 7, 8, 9, 11, 7)	15)	6M	CO2	L3
b) Define prime implica	ant and essential prime in	mplicant with			
example using K-ma	р.		6M	CO2	L2
	OR				
	g Boolean function using	K- map and			
implement using NAI Y(A, B, C, D) = m(0, 1)	<u> </u>		12	CO2	L3
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			e 1 of	
			. ~0		

Code:	20A234T
-------	---------

			ue. 20	A2341	
C	a)	UNIT-III Decign a combinational circuit that accents a three hit			
б.	a) b)	Design a combinational circuit that accepts a three-bit binary number and generates an output binary number equal to the twice the input number. Design 4x16 decoder using two 3x8 decoders with block	6M	CO3	L4
		diagram.	6M	CO3	L4
		OR			
7.	a)	Explain the general combinational PLD configuration with suitable block diagram.	6M	CO3	L2
	b)	Give the logic implementation of a 32×4 bit & 8×4 bit ROM using suitable decoder.	6M	CO3	L1
		UNIT–IV			
8.	a)	Draw the logic diagram and write functional table of an SR latch using NAND gates. Explain the operation.	6M	CO4	L4
	b)	Design mod 8 synchronous counter using T flip-flop.		CO4	L4
	,	OR			
9.		Draw the circuit diagram of J-K Flip-Flop with NAND gates with positive edge triggering and explain its operation with the help of truth table. How race around condition is eliminated?	12	CO4	L1
		UNIT-V			
10.		Draw the state diagram for mod-6 counter and obtain ASM chart	12	CO5	L1
		OR			
11.	a)	Compare between Moore and Mealy machine.	6M	CO5	L2
	b)	Explain in detail the block diagram of ASM chart.	6M	CO5	L2

*** End ***

Hall Ticket Number :		
Code: 20AC32T	-20	
II B.Tech. I Semester Supplmentary Examinations August 2022		
Transform Techniques & Complex Variables		
(Common to EEE and ECE) Max. Marks: 70	: 3 Hoi	Jrs

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.		
3. Answer ALL the questions in Part-A and Part-B		
<u>PART-A</u> (Compulsory question)		
1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	со	Blooms Level
a) Find $L \left[\sin^3 3t \right]$.	CO	
b) Evaluate: $L^{-1} \left \frac{1}{(s+1)(s+2)} \right $.	CO	2 L3
$\lfloor (s+1)(s+2) \rfloor$		
c) Find the Fourier coefficient b_n of the Fourier series expansion for the	е	
function $f(x) = x^2$ in the interval $[0, 2f]$.	CO	3 L3
d) Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic eventwhere	c co	4 L1
everywhere.		
e) Find the poles and residues of $f(z) = \frac{e^{z}}{z(1+z)^{2}}$.	CO	5 L2
PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ Ma	rks)	
Ma		Blooms
	ks CC	Level
2. a) Find the Laplace Transformation of $f(t) = t e^{3t} \sin t$		
	M CO	1 L3
b) Prove that $\int_{0}^{\infty} \left(\frac{e^{-t} - e^{-3t}}{t}\right) dt = \log(3)$		
b) Prove that $\int_{0}^{t} t = \int_{0}^{t} e^{i\theta g(\theta)}$.	и со	1 L2
OR		
3. a) Find the Laplace Transform of $f(t) = \begin{cases} 1 & 0 \le t < a \\ -1 & a < t < 2a \end{cases}$ and $f(t)$		
$\begin{bmatrix} -1 & a < t < 2a \end{bmatrix}$		
	M CO	1 L1
b) Find the Laplace Transformation of $f(t) = \frac{e^{-t} \sin t}{t}$.		
t 6	M CO	1 L1
	_	6 •
	Page 1 ()† 3

UNIT-II

4. a) Apply convolution theorem to evaluate $L^{-1}\left(\frac{1}{(s^2+a^2)(s^2+b^2)}\right)$ 6M CO2 L3

b) Find the inverse Laplace Transformation of

$$F(s) = \frac{s^2 - 15s - 11}{(s+1)(s-2)^2}.$$
 6M CO2 L3

5. Solve the differential equation $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = t^2 e^{3t}; y(0) = 2; y'(0) = 6$ by using Laplace Transformation. 12M CO2 L3 **UNIT-III** 6. Find Fourier series of $f(x) = x + x^2$ in (-f, f) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$. 12M CO3 L1 **OR** 7. Find Fourier Cosine and Sine transform of

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \\ 0 & x > 2 \end{cases}$$
12M CO3 L1

8. Show that the function $u = e^{2x} (x \cos(2y) - y \sin(2y))_{is}$ harmonic. Find the conjugate function v and express u + iv as an analytic function of z. 12M CO4 L1

9. Evaluate
$$\int_{C} \frac{e^{z}}{z(1-z)^{3}} dz$$
 where C is (i) $|z| = \frac{1}{2}$
(ii) $|z-1| = \frac{1}{2}$ (iii) $|z| = 2$. 12M CO4 L2

UNIT-V
10. a) Find Laurent's series of
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 for $1 < |z| < 3$.
b) State Cauchy Residue theorem and hence evaluate

$$\int_{c} \frac{\sin^{2} z}{\left(z - \frac{f}{6}\right)^{3}} dz$$
 where *C* the circle is $|z| = 1$.
OR
11. a) Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_{0} = 2i$.
M CO5 L3

b) State Cauchy Residue theorem and hence evaluate

$$\int_{C} \frac{\cos z}{(z-fi)^2} dz \text{ where } C \text{ is the circle } |z| = 5.$$
6M CO5 L3
*** End ***

Hall Ticke	et Number :]]			
Code: 20/	A 233T						<u></u>		<u></u>		R	-20	
	I B.Tech. I Sem	iester Su	pplr	mer	ntary	/ Exc	amir	natic	ons .	Augi	ust 2022		
			nalc	-						,			
Max. Mar	•	lectrical	ana	Elec	CTror	NCS E	ngir	neeri	ing)	Time	: 3 Hou	irs
Note 1 0	uestion Paper co	nsists of 1	won		**** (P ar		and I	Part_	R)				
2. In	Part-A, each quinswer ALL the c	estion car	ries '	Two	mai	·k.		ai t-	D)				
		(Comp		<u>RT-A</u> ry qu		on)						
1. An	swer <i>all</i> the fo	ollowing	shc	ort a	nsw	er c	lues	tion	s (5X2	= 10M)) со	Blooms Level
	aw the circuit of	•			•	se s	shift	osc	illat	or ar	nd write	CO1	L2
	frequency of o					~ * ~ *	1:01	o #0				000	
	hat are the lim				-			-				CO2	L2
	fine Compara				•••					امما		CO3	L2
	nat is the differ PLL?	rence b	etwe	en	сар	ture	ran	ge a	and	IOCK	range	CO4	L2
^{e)} De	fine the terms	settling	, tim				ersi	on t	ime	of D	DAC.	CO5	L2
Answer a	ny <i>five full</i> questi	ons by ch	oosin		RT-B e aua		ı froi	n eac	ch u	nit (5	x 12 = 60	Marks)
		o	00011	8 •							Marks		Blooms
			U	NIT-	-1								Level
2. a)	Explain the	circuit	diag	gran	n of	f co	lpitt	s o	scil	lator			
	with a neat	diagran	n&,	der	ive	the	exp	res	sior	n for			
	frequency of	oscillat	ion								10M	CO1	L2
b)	Sketch the ci		agra	m o	fav	volta	age	shu	nt f	eed-			
	back amplifie	er									2M	CO1	L2
a				DR									
3. a)	Explain the		-	-			-						
	with a neat frequency of	-		den	ive	tne	exp	res	SIO		10M	CO1	L2
b)	List the steps			0 02	arrv	out	the	ana	alvs	is of		001	LZ
,	a feed- back	-			J						2M	CO1	L2
			U	-TIV	-11								
4.	Draw the cir	cuit of	Log	, ar	nd A	Anti	log	Am	plif	iers.			
	Explain its op	peration	in c	leta	il						12M	CO2	L2

		Couc.	2082331	
	OR			
5.	Explain the operation of Instrumentation amplifier with the help of block diagram and derive equation for gain.	12M	CO2	L2
	UNIT–III			
6.	a) Construct and explain the working principle of a Triangular wave generator using Op-amp.	9M	CO3	L2
	b) Discuss the working of a Clipper circuit	3M	CO3	L2
	OR	om	003	LZ
7.	a) Explain the working principle and operation of Astable multivibrator using Op-Amp with relevant	014		
	sketch	9M	CO3	L2
	b) Explain opamp based full-wave Rectifier UNIT-IV	3M	CO3	L2
8.	With the help of neat circuit diagram explain the functioning of 565 PLL in detail.	12M	CO4	L2
	OR			
9.	Explain in detail the principle and operation of PLL UNIT-V	12M	CO4	L2
10.	Explain in detail about R-2R ladder type digital to analog converter?	12M	CO5	L2
	OR			
11.	Explain the operation of successive approximation type analog to digital converter?	12M	CO5	L2

*** End ***