Code: 20A232T
|| B.Tech. I Semester Supplmentary Examinations August 2022

Network Analysis and Signals

(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M})$
a) List the dependent and independent variables of transmission parameters in terms of network parameters.
b) State final value theorem.
c) Define time constant.
d) Define unit impulse function.
e) Define odd function symmetry.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Determine the relation between A, B, C, D and z parameters.
b) The following equations refer to a two port network:

$$
V_{1}=5 I_{1}+2 I_{2} \quad V_{2}=2 I_{1}+I_{2}
$$

A load resistance of 3 is connected across port 2 terminals. Determine the input impedance.

OR

3. a) Determine the relation between hybrid and z parameters. $\quad 5 \mathrm{M} \quad 1 \quad 3$
b) Determine the A, B, C, D parameters of the circuit shown below:

UNIT-II
4. a) Derive the Laplace transform of $\cos \omega t$. $6 \mathrm{M} \quad 2$ 6
b) Apply Laplace transform concept to simple R-L seriescircuit.
$6 \mathrm{M} \quad 2$ 3
OR
5. a) Derive the Laplace transform of exponential function. 6M 2 6
b) Apply Laplace transform concept to simple R-C series circuit. 3
UNIT-III
6. Analyze the response of series R-L-C circuit when excited by sinusoidal voltage.
OR
7. Analyze the response of series R-C circuit when excited by a dc voltage. 12 M 3 4
UNIT-I8. Explain the classification of discrete time signals.12 M 42
OR
8. Explain the concept of convolution of signals. 12M 4 2
UNIT-IV
9. Evaluate the Fourier series of a triangular waveform. 12M 5 5
OR
10. What is a Fourier series? Explain the half wave symmetryof the series.12 M 5

Code: 20A231T
II B.Tech. I Semester Supplmentary Examinations August 2022
Electrical Machines - I
(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) What is the purpose of commutator in DC machines? 1
b) Define critical speed of a DC machine? 24
c) What is the significance of field test on DC machines? 3
d) What is the effect of frequency variation on iron losses? 4
e) What is the use of tertiary windings in three phase transformers? 5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
2. Draw a neat sketch of DC generator. State the functions of
each part?
2. Draw a neat sketch of DC generator. State the functions of
each part?
2. Draw a neat sketch of DC generator. State the functions of
each part?

12M 1

OR

3. a) What is armature reaction? Describe the effects of armature reaction on the operation of DC machines

6M 1
b) Explain the process of commutation in DC machines and describe the methods to improve it?
$6 \mathrm{M} \quad 1$
UNIT-II
4. a) What are the different types of DC generators according to the ways in which the fields are excited? Show the connection diagram of each type?

OR

5. a) With neat circuit diagram, explain how the magnetization characteristics can be obtained for self-excited DC machine?
b) What is the critical field resistance of a DC shunt generator? What is its significance?
UNIT-III
6. a) Explain what is back EMF and it's significance in a DC motor?
b) What is the necessity of starter for a DC motor? Explain, with a neat sketch, the working of a 3 point DC shunt motor starter, bringing out the protective features incorporated in it?
$8 \mathrm{M} \quad 1$

OR

7. a) Describe Swinburne's test with the help of a neat circuit diagram to find the efficiency of a DC machine?

6M 3
b) A 200V.14.92 KW DC shunt motor when tested by Swinburne's method gave the following test results.
Running light: Armature current=6.5A, Field current=2.2A
Aramture locked: The current was 70A when a potential difference of 3 V was applied to the brushes. Estimate the efficiency of the motor when working under full load conditions?

UNIT-IV

8. a) Develop the phasor diagram of a single phase transformer under loaded condition. Assume lagging power factor load?

6M 4
3
b) Develop the exact equivalent circuit of a single phase transformer. From this derive the approximate and simplified equivalent circuits of the transformer. State the various assumptions made?

OR

9. a) Explain Sumpner's test for testing two single phase transformers. Also explain why this method is beneficial to find the efficiency of transformers?

6M 4
b) The full load copper loss and iron losses of a 15 KVA single phase transformer are 320W and 200W respectively. Calculate the efficiency of the transformer on
i) Full load
ii) Half load.

Assume the power factor as 0.8 lagging.
6M 4

UNIT-V

10. a) What is an auto transformer? State it's merits and demerits over the two winding transformer?

6M 4
b) Draw the Scott connection of transformers and mark the terminals and turn ratio. What are the applications of Scott connection?

6M 5

OR

11. a) Describe briefly the essential and desirable conditions to be fulfilled for operating two three phase transformers in parallel?

6M 5
b) Draw schematically how a three phase transformer can be phased in with another three phase transformer?

6M 5
\square

Code: 20A234T

R-20

II B.Tech. I Semester Supplmentary Examinations August 2022
Switching Theory and Logic Design
(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions
a) What is the necessity of binary codes in computers?
b) What are the advantages of tabulation method over K-map?

CO2
c) Draw the 1-to-4 line DEMUX and truth table.

CO3
d) What is meant by race around condition?

CO4
e) Write the capabilities and limitations of finite state machines.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Distinguish between weighted and non-weighted codes with examples.

6M
CO1
b) What is the advantage of 2's complement representation in computers? Perform the following operations using 2's complement method: (i) $(+55)-(+15)$ (ii) $(-55)-(-15) \quad 6 \mathrm{M}$ co1 L1 OR
3. a) State duality theorem. List Boolean laws and their duals.
b) Given Boolean expression $A B^{\prime}+A^{\prime} B=C$. Show that $A C^{\prime}+A^{\prime} C=B$.

UNIT-II

4. a) Simplify the following Boolean function using tabulation method. $Y(A, B, C, D)=\boldsymbol{\Sigma}(0,1,3,7,8,9,11,15)$
b) Define prime implicant and essential prime implicant with example using K-map.

OR

5. Simplify the following Boolean function using K- map and implement using NAND -NAND Logic.
$Y(A, B, C, D)=\Sigma \mathrm{m}(0,1,2,3,5,7,8,9,11,14)$.

UNIT-III

6. a) Design a combinational circuit that accepts a three-bit binary number and generates an output binary number equal to the twice the input number.
6M co3
b) Design 4×16 decoder using two 3×8 decoders with block diagram.
$6 \mathrm{M} \mathrm{CO3}$

OR

7. a) Explain the general combinational PLD configuration with suitable block diagram.
$6 \mathrm{M} \mathrm{CO3}$
b) Give the logic implementation of a 32×4 bit \& 8×4 bit ROM using suitable decoder.

UNIT-IV

8. a) Draw the logic diagram and write functional table of an SR latch using NAND gates. Explain the operation.
$6 \mathrm{M} \mathrm{CO4}$
b) Design mod 8 synchronous counter using T flip-flop.
$6 \mathrm{M} \mathrm{CO4}$

OR

9. Draw the circuit diagram of J-K Flip-Flop with NAND gates with positive edge triggering and explain its operation with the help of truth table. How race around condition is eliminated?

12 CO 4

UNIT-V

10. Draw the state diagram for mod-6 counter and obtain ASM chart

12 CO 5

OR

11. a) Compare between Moore and Mealy machine. $6 \mathrm{M} \quad \cos \quad \mathrm{L} 2$
b) Explain in detail the block diagram of ASM chart.

6M cos
\square

Code: 20AC32T

II B.Tech. I Semester Supplmentary Examinations August 2022
Transform Techniques \& Complex Variables
(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{co}$
a) Find $L\left[\sin ^{3} 3 t\right]$. CO1
b) Evaluate: $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$. CO2
c) Find the Fourier coefficient b_{n} of the Fourier series expansion for the function $f(x)=x^{2}$ in the interval $[0,2 \pi]$.
d) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic co4 everywhere.
e) Find the poles and residues of $f(z)=\frac{e^{z}}{z(1+z)^{2}}$.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Find the Laplace Transformation of $f(t)=t e^{3 t} \sin t$.

6M CO1
b) Prove that $\int_{0}^{\infty}\left(\frac{e^{-t}-e^{-3 t}}{t}\right) d t=\log (3)$.

6M CO1
L2

OR

3. a) Find the Laplace Transform of $f(t)=\left\{\begin{array}{ll}1 & 0 \leq t<a \\ -1 & a<t<2 a\end{array}\right.$ and $f(t)$ is periodic with period $2 a$.

6M CO1
b) Find the Laplace Transformation of $f(t)=\frac{e^{-t} \sin t}{t}$.

UNIT-II

4. a) Apply convolution theorem to evaluate $L^{-1}\left(\frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right)$
b) Find the inverse Laplace Transformation of

$$
F(s)=\frac{s^{2}-15 s-11}{(s+1)(s-2)^{2}} .
$$

OR

5. Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=t^{2} e^{3 t} ; y(0)=2 ; y^{\prime}(0)=6
$$

by using Laplace Transformation.
12M CO2

UNIT-III

6. Find Fourier series of $f(x)=x+x^{2}$ in $(-\pi, \pi)$ and hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \ldots .=\frac{\pi^{2}}{12}$.

12M CO3
7. Find Fourier Cosine and Sine transform of

$$
f(x)=\left\{\begin{array}{ll}
x & 0<x<1 \\
2-x & 1<x<2 \\
0 & x>2
\end{array} .\right.
$$

UNIT-IV

8. Show that the function $u=e^{2 x}(x \cos (2 y)-y \sin (2 y))$ is harmonic. Find the conjugate function v and express $u+i v$ as an analytic function of z.

OR

9. Evaluate $\int_{C} \frac{e^{z}}{z(1-z)^{3}} d z$ where C is (i) $|z|=\frac{1}{2}$
(ii) $|z-1|=\frac{1}{2}$
(iii) $|z|=2$.
[^0]
UNIT-V

10. a) Find Laurent's series of $f(z)=\frac{1}{(z+1)(z+3)}$ for $1<|z|<3$.

6M CO5 L2
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ where C the circle is $|z|=1$. OR
11. a) Expand $f(z)=\frac{1}{1-z}$ in a Taylor series with center $z_{0}=2 i$.
b) State Cauchy Residue theorem and hence evaluate

$$
\int_{C} \frac{\cos z}{(z-\pi i)^{2}} d z \text { where } C \text { is the circle }|z|=5
$$ 6M CO5 L3

Hall Ticket Number :

R-20

Code: 20A233T
II B.Tech. I Semester Supplmentary Examinations August 2022

Analog Electronics

(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Draw the circuit diagram of RC phase shift oscillator and write co1 L2 its frequency of oscillation formula.
b) What are the limitations of ideal differentiator? CO2 L2
c) Define Comparator and list its applications. CO3 L2
d) What is the difference between capture range and lock range in PLL?
e) Define the terms settling time and conversion time of DAC. CO5
PART-B
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the circuit diagram of colpitts oscillator with a neat diagram\&, derive the expression for frequency of oscillation 10M co1
b) Sketch the circuit diagram of a voltage shunt feedback amplifier

2M co1

OR

3. a) Explain the circuit diagram of Crystal oscillator with a neat diagram\&, derive the expression for frequency of oscillation

10M co1
b) List the steps required to carry out the analysis of a feed- back amplifier.

2M co1

UNIT-II

4. Draw the circuit of Log and Anti log Amplifiers. Explain its operation in detail

OR

5. Explain the operation of Instrumentation amplifier with the help of block diagram and derive equation for gain.

12M co2

UNIT-III

6. a) Construct and explain the working principle of a Triangular wave generator using Op-amp.
b) Discuss the working of a Clipper circuit

3M соз OR
7. a) Explain the working principle and operation of Astable multivibrator using Op-Amp with relevant sketch

9M co3
b) Explain opamp based full-wave Rectifier

3M cos

UNIT-IV

8. With the help of neat circuit diagram explain the functioning of 565 PLL in detail.

12M co4
OR
9. Explain in detail the principle and operation of PLL

UNIT-V

10. Explain in detail about R-2R ladder type digital to analog converter?

OR

11. Explain the operation of successive approximation type analog to digital converter?

[^0]: 12M CO4

