Car	le: 20A333T	R-20	
COL	II B.Tech. I Semester Supplementary Examinations June 2024	4	
	Basic Thermodynamics	-	
	(Mechanical Engineering)	• • •	
Ma	x. Marks: 70 Tim	ie: 3 Ho	ours
Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
1.	Answer all the following short answer questions $(5 \times 2 = 10M)$	СО	BL
a)	What are the different types of thermodynamic systems?	1	L1
b)	What is PMM II?	2	L1
c)	When do you go for separating and throttling calorimeter?	3	L2
d)	State the Dalton's law of partial pressures.	4	L1
e)	Define mean effective pressure.	5	L2
,	' PART-B	-	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ M	(arks)	
			~~
		Marks	CO
	UNIT-I	6M	
	What are the causes of irreversibility?	OIVI	1
b)	During one cycle the working fluid in an engine engages in two work interactions: 15 kJ to the fluid and 44 kJ from the fluid,		
	and three heat interactions, two of which are known: 75 kJ to		
	the fluid and 40 kJ from the fluid. Evaluate the magnitude and		
	direction of the third heat transfer.	6M	1
	OR		
-	A nozzle is a device for increasing the velocity of a steadily		
	flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At		
	the discharge end, the enthalpy is 2762 kJ/kg. The nozzle is		
	horizontal and there is negligible heat loss from it. (a) Find the		
	velocity at exict from the nozzle. (b) If the inlet area is 0.1 m^2		
	and the specific volume at inlet is 0.187 m ³ /kg, find the mass		
	flow rate. (c) If the specific volume at the nozzle exit is 0.498 m^{3}/kg find the exit area of the pozzle	12M	1
	m ³ /kg, find the exit area of the nozzle.		1
	LINIT-II		
	UNIT-II Establish the equivalence of Kelvin-Planck and Clausius		

2 L4

3 L4

4 L2

4 L2

4 L4

5 L3

3 L3

12M

6M

12M

5. Using an engine of 30% thermal efficiency to drive a refrigerator having a COP of 5, what is the heat input into the engine for each MJ removed from the cold body by the refrigerator? If this system is used as a heat pump, how many MJ of heat would be available for heating for each MJ of heat input to the engine?
12M

UNIT-III

 Draw the phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines.
 12M

OR

7. A rigid closed tank of volume 3 m³ contains 5 kg of wet steam at a pressure of 200 kPa. The tank is heated until the steam becomes dry saturated. Determine the final pressure and the heat transfer to the tank.

UNIT-IV

- 8. a) Derive the expression of work transfer for an ideal gas in a reversible isothermal process.
 6M
 - b) What are the relations among p, v and T of an ideal gas in a polytropic process?

OR

9. A gas occupies $0.024m^3$ at 700 kPa and 95°C. It is expanded in the non-flow process according to the law $pv^{l.2}$ = constant to a pressure of 70 kPa after which it is heated at constant pressure back to its original temperature. Sketch the process on the p-v and T-s diagrams, and calculate for the whole process the work done, the heat transferred and the change of entropy. Take $C_p = 1.047$ and $C_v = 0.775$ kJ/kg K for the gas.

UNIT-V

10. Derive the expression for the efficiency of Diesel cycle. 12M

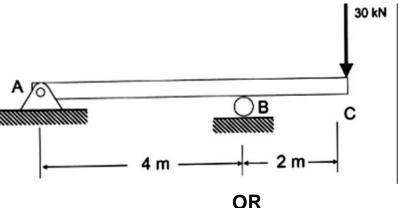
OR

In an air standard Diesel cycle, the compression ratio is 15. Compression begins at 0.1 MPa, 40°C. The heat added is 1.675 MJ/kg. Find (a) the maximum temperature of the cycle, (b) the work done per kg of air, (c) the cycle efficiency, (d) the temperature at the end of the isentropic expansion, (e) the cutoff ratio, (f) the maximum pressure of the cycle, and (g) the m.e.p. of the cycle.

12M 5 L4

		R-20)
Co	bde: 20A332T		
	II B.Tech. I Semester Supplementary Examinations June 2 Manufacturing Processes	2024	
	(Mechanical Engineering)		
M	ax. Marks: 70	Time: 3	Hours

No	te: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
	<u>PART-A</u> (Compulsory question)		
	1. Answer all the following short answer questions (5 X 2 = 10M)	СО В	1
	a) Define Gating Ratio	1 L	
	b) Differentiate arc welding and Gas welding	1 L 2 L	
	c) Describe strain hardening	2 L 3 L	
	d) List the type of forging process	0 L 4 L	
	e) Differentiate injection and blow molding process	5 L	
	PART-B	0 2	-
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Mai	ˈks)
			s CO
	UNIT-I		
	What is a casting? Describe the various steps involved in obtaining a castir	ng 12N	И 1
	OR		
	List special casting processes and explain 'Investment casting' process?	121	И 1
	UNIT-II What is the principle involved in Gas Metal Arc Welding (GMAW) with a blo		
•	diagram	12N	И 2
	OR		
	Explain resistance spot welding process with a neat sketch.	12	л 2
j.	Describe Rolling Process? Explain the types or Rolling Mills?	12	И 3
	OR		
	What is drawing? Explains its types with sketch	12	И 3
	UNIT-IV		
	Define Extrusion? What are types of Extrusion processes? Explain each of		1 0
	with neat sketches?	121	И З
)_	OR What is hot and cold extrusion process? Explain hydrostatic extrusion	12	И З
•	What is hot and cold extrusion process? Explain hydrostatic extrusion UNIT-V	ιZľ	/1 3
).	Explain injection and blow moulding process with neat sketch	12	И З
	OR		5
2)	Explain steel making using crucible process?	61	И З
. di		5.	
. a) b)	What is powder metallurgy and explain its principle	6	И З


На	Il Ticket Number :			
Cod	e: 20A331T	R-20		
	II B.Tech. I Semester Supplementary Examinations June 20)24		
	Mechanics of Solids (Mechanical Engineering)			
Max		ime: 3 Ho	ours	
Note	: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks.			
	3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
1. Answe	er all the following short answer questions $(5 \times 2 = 10M)$		CO	BL
	ne i) Modulus of Elasticity and ii)Poisson's ratio		1	1
,	he Point of contra-flexure in a beam subjected to bending m	oment?	0	
•	ain with examples? ne section modulus of a beam? What is the section modul	us of a	2	1
,	gular section of base (b) and height (h)?		3	2
	t is the deflection under the load of a simply supported beam	of span		
4m, s	subjected to a central point load of 20kN? Use flexural rigidity a	as El	4	3
,	n spherical shell of diameter 1m and wall thickness 1mm, is su	-		
	internal pressure of 20MPa. Calculate the Hoop stress devel ylinder?	opea in	5	2
	PART-B		0	2
An	swer <i>five</i> questions by choosing one question from each unit (5 x 12 =			
	UNIT-I	Marks	CO	BL
2. a)	Derive relation between Modulus of elasticity, Rigidity	/		
,	Modulus and Poisson's ratio	7M	1	1
b)	A circular bar of 200mm diameter and length 500mm is	6		
	subjected to an axial pull of 100kN. E= 200GPa, determine	;		
	change in length and diameter of the bar due to loading	5M		3
	OR	_		
3. a)	A bar of length 2m and uniform cross section of 200 mm ² is at a room temperature of 30°C, the bar is heated uniformly to 80°C. Coefficient of thermal expansion of the	ł		
	bar is 10×10^{-6} /°C. Determine the stress developed in the			
	bar when i) the bar is free to expand ii) the bar is no	t		
	allowed to expand iii) supports yield by 1mm.	7M	1	3

b) A bar of length L, modulus of elasticity E is having varying diameter. The diameter is changing from D to d. Derive the expression for the change in length of the bar due to an axial load of P?

5M 1 2

UNIT-II

4. Draw Shear Force Diagram and Bending Moment Diagram of the over-hanging beam shown in figure. Mark salient points

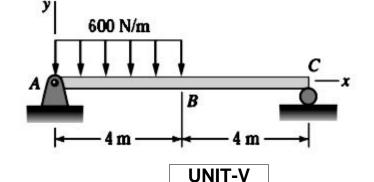
12M 2 4

- 2
- 5. a) Derive the relation between Bending Moment, Shear Force and rate of load on a beam 5M 4 b) A cantilever beam of length L and loaded with uvl of intensity w at the free end and zero at the fixed end. Draw SFD and BMD of the beam? Show important points in the 7M beam 3 **UNIT-III** 6. a) State assumptions in Pure bending? 4M 3 1 b) Derive the flexural equation? 8M 3 2 OR 7. a) What is flexural rigidity? 2M 3 1 b) A simply supported beam of 4m length having a rectangular cross section of 100 mm width and 200 mm depth. It is subjected to a point load of 100 kN 1.5 m from left end.
 - E=200GN/m².Calculate maximum bending stress developed in the beam?

UNIT-IV

A cantilever beam of length 4m is fixed at left end and free at the right end. A point load of 10 kN is applied at the free end. EI is the flexural rigidity of the beam. Determine slope and deflection at the mid span of cantilever beam?

12M 4 4


3

4

10M

OR

 A simply supported beam of uniform cross section is subjected to loading as shown in the figure below.
 E=100GPa, the beam is having circlar cross section of diamter 100mm. Determine deflection at mid span (at B)?

12M 4 4

3

A thin cylinder of length 1000mm, internal diameter 100mm is subjected to an internal pressure of 2MPa. E=200N/mm². Poisson's ratio 0.25, calculate the change in length, diameter and volume of the cylinder due to internal pressure?

OR

11. a) Derive the expression to determine hoop and circumferential stress in a thin sphere 6M 5 3 b) A thin cylinder is subjected to an internal fluid pressure due to water flowing in the cylinder. The allowable strength of material of the cylinder is 150MPa. Diameter of the cylinder is 500mm, length 2m. Determine the thickness of the metal of the cylinder. 6M 5 4 *** End ***

	Hall Ticket Num								R-2	20		
C		ch.ISem	nastar S	unnlem	ontan	Evami	ination		2024			
		ial Differ			•							
				Commor								
٢	Max. Marks: 70		·			,			Time: 3	3 Ho	ours	
N	lata: 1 Quastian	Danarca	ncists of		******	A and D	ort D)					
P	lote: 1. Questior 2. In Part-A,	•		•	•	a anu Pa	art-Dj					
	3. Answer A	•				:-В						
		1-			RT-A							
			(0	Compuls	ory que	stion)						
1.	Answer all the f	ollowing sł	hort ansv	wer questi	ons (5 X 2 =	10M)			C) BL	-
a)			tion meth	nod and s	pecify its	s order o	of conver	gence.		CC		
b)	Explain Interpol	ation.								CC)2 L2	2
c)	Evaluate $\int_{0.6}^{2.0} y dx$	dx by usir	ng trapez	zoidal rule	to the fo	ollowing	table					
	X	0.6	3 1.0	0 1.2	1.4	1.6	1.8	20				
	у	1.23 1.5	58 2.0	3 4.32	6.25	8.38	10.23	12.45		CC	D3 L5	5
d)	Write the formu	la for Rung	ge-Kutta	method c	f second	d order.				CC	04 L1	
e)	Write One-dime	ensional He	eat flow e	•		ensiona	al Heat fl	ow equat	tion.	CC	D5 L1	
	Answer <i>five</i> qu	lostions b	v choos		<u>RT-B</u>	from o	ach uni	+ (5 v 1 2	- 60 M	arka	•)	
	Allswei <i>live</i> qu		y choos		lucstioi						, CO	BL
				U	IIT-I							
. a)	By using the											
	equation $\sin x =$				and x=	1.5 (me	asured i	n radian	•	~ • •	004	10
۲	Carry out comp	•		•						6M		L3
b)	Find the root of	the equation	on <i>cosx</i>		•	ng Itera	tion metr	nod	6	5M	CO1	L4
a)	Find a real reat	of the equ	otion al		DR	oina roa	ulo fol	-i-motho	J			
	Find a real root correct to four d			0810 x -	1. 2 Dy u	sing reg	ula – Tak	simethot		6M	CO1	L4
,		lecimai pia		ind a reat	of the e	nuction	.4	10			001	L4
	Lloing Nouton	Jonhoon m	aathad fi			manon	x - x =	TO Colled	<i>.</i>			
b)	Using Newton-F	•	nethod, fi	ind a root		quation			6	21/12	CO1	12
,	Using Newton-F to three decima	•	nethod, fi			quation			6	5M	CO1	L3
,	-	l places.		UN	IIT-II				e	6M	CO1	L3
b)	to three decima	l places.		UN	IIT-II	40	45		(6M	CO1	L3
b)	to three decima Find the value of	I places. of $f(42)$ to	o the follo	UN owing data	I IT-II	-					CO1 CO2	L3 L4
b) a)	to three decima Find the value of X f(x)	l places. of $f(42)$ to 20 354	o the follo 25 332	UN owing data 30 291	IIT-II a 35 260	40 231	45 204		e			
b)	to three decima Find the value of X	l places. of $f(42)$ to 20 354	o the follo 25 332	UN owing data 30 291	IIT-II a 35 260	40 231	45 204	as a su	e			
b) a)	to three decima Find the value of X f(x)	l places. of $f(42)$ to 20 354 e's formula	o the follo 25 332	UN owing data 30 291 ss the fund	IIT-II a 35 260	40 231	45 204		ſ	6M	CO2	

6.

7.

8.

9.

10.

11.

. a)	Using Newton's back	ward formula	a, find the v	alue of	f (2.0), if							
ŗ	X]								
	f(x)	3.49	4.82		5.96	6.5	6M	CO2	L3			
b)	Find the relation betw	veen E and L]			6M	CO2	L4			
	Given that		UN	IT-III								
•												
	x 1	1.2	1.4	1.6	1.8	2						
	y 2.72	I	4.06	4.95	6.05	7.39						
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}a$	at $x=1.1$ and .	x=1.2				4014	000				
	$dx = dx^2$			-			12M	CO3	L4			
				R								
. a)	Use the Trapezoidal r	rule to estima	ate $\int x \sec x$	<i>x dx</i> taki	na 8 inte	rvals.						
			0 0				6M	CO3	L3			
b)	A river is 80 feet wide	; the depth is	s d in feet a	at a dist	ance x fo	oot from one ba	nk					
	is given by the followi	ng table, find	d approxim	ately the	e area of	cross-section						
	x 0 0.8	1.0 3	0 40	50	60	70 80						
	y 0 4	7 9	9 12	15	14	8 3	6M	CO3	L4			
			UNI	T-IV								
	Employ the Taylor's s					ue of y at x=1.1,						
	x=1.2 for the differential equation $\frac{dy}{dx} = \log xy, y(1) = 2$ 12M CO4 L4											
		6					12M	CO4	L4			
			•	R								
. a)	Using Picard's proces											
	x = 2 up to 5 th approxi	mation of $\frac{d}{d}$	$\frac{y}{dx} = 2x - y$	such t	hat y (0)	=3		004	10			
۲							6M	CO4	L3			
D)	Apply Runge-kutta for		ethoa, fina	an appi	xi at	value of y when	1					
	$\mathbf{x} = 0.1$ Given that $\frac{d}{d}$	$\frac{y}{x} = x + y^2$, Si	uch that y	= 1whe	n _x = o		6M	CO4	L4			
			UN	IT-V								
	and an the transformation	$\partial^2 u$	$\partial^2 u$	0								
•	solve the Laplace equ	Jation $\frac{\partial x^2}{\partial x^2}$ +	$\frac{\partial y^2}{\partial y^2} = 0 = 0$	U SUDJEC	cted to th	e conditions						
				. (nf.	x)							
	u(0, y) = u(l, y) = u(l, y)	(x,0)=0 and	l u(x,a) =	$\sin\left(\frac{-\frac{3}{l}}{l}\right)$	_)		12M	CO5	13			
			0	R	,		12.00	000	20			
	A tightly stretched s	tring with fix			=0 and :	k=l is initially i	na					
						-						
	position given by $y =$	$y_0 \sin^3\left(\frac{l}{l}\right)$. If it is re	leased I	rom test	from this positi	on,					
	find the displacement	y(x,t)					12M	CO5	L4			
			*** F	nd ***								

*** End ***

~		mical Electronics Engineering) Time: 3 Hours mical Engineering) Time: 3 Hours marks. Transistor. 6 rt-A and Part-B PART-A pulsory question) CO BL t answer questions (5 X 2 = 10M) CO BL CO1 2 CO2 1 transformer. CO3 2 1 transformer. CO3 2 1 transformer. CO3 2 1 me question from each unit (5 x 12 = 60 Marks) Marks CO BL Works? 6M CO1 2 6 0 1 Marks? 6M CO1 2 6 0 1 1 OR 6M CO1 2 2 2 2 2 2 2 2 2 2 3 </th	
Co	de: 20A235T	 ๅว∕≀]
		JZ4	
M		lime: 3 F	lours

No	te: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. In Part-A, each question carries Two marks.		
	3. Answer ALL the questions in Part-A and Part-B		
) (0	BI
	a) State Lenz's Law?	,	
	b) Define back EMF of a DC motor?		
	c) Describe the losses present in a transformer.		
	d) Sketch the V-I characteristics of diode.		
	e) Define term controlling torque in PMMC?		
	·		
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$) Marks)	
		Marks	CO
-)		014	004
a)	Explain inductive and capacitive networks? Illustrate a series circuit.		
b)		DIVI	COT
a)	State Kirchhoff's laws with examples.	6M	CO1
b)	Illustrate a series-parallel circuit.		
	UNIT-II		
	Describe constructional details of a DC motor with neat sketch.	12M	CO2
	-		
	Describe the efficiency and losses of a DC shunt motor by brake test.	. I Semester Supplementary Examinations June 2024 asic Electrical and Electronics Engineering (Mechanical Engineering) Time: 3 Hours ******* aper consists of two parts (Part-A and Part-B) ach question carries Two marks. the questions in Part-A and Part-B PART-A (Compulsory question) the following short answer questions (5 X 2 = 10M) CO BL Law? CO1 2 EMF of a DC motor? CO2 1 losses present in a transformer. CO3 2 -1 characteristics of diode. CO4 4 controlling torque in PMMC? CO5 1 PART-B estions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I e and capacitive networks? 6M CO1 is circuit. 6M CO1 s laws with examples. 6M CO1 ustional details of a DC motor with neat sketch. 12M CO2 oR ficiency and losses of a DC shunt motor by brake test. 12M CO2 induction process in a single phase transformer? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO3 C and OC test help to find the regulation? 6M CO4 about PNP and NPN Transistor. 6M CO4 about PNP and NPN Transistor. 6M CO4 about PNP and NPN Transistor. 6M CO5 diagram of CRO and represent the parts. 6M CO5 diagram of CRO and represent the parts. 6M CO5	
a)		6M	CO^{2}
a) b)			
5)		OIVI	003
	Explain synchronous impedance method in calculating the regulation of a	า	
	alternator.	12M	CO3
、		~- ·	
a)	Explain full wave rectifier.		
b)	Explain in detail about PNP and NPN Transistor.	бM	004
	Sketch input and output characteristics of CE configuration.	12M	CO4
		1 - 1 1 1	507
a)	Describe the parts and functioning of a moving iron instrument?	6M	CO5
b)	Draw the block diagram of CRO and represent the parts.	6M	CO5
	OR		
a)	Explain types of earthing.	6M	CO5

	^ -	all Ticket Number : R-19	
	Co	II B.Tech. I Semester Supplementary Examinations June 2024	
		Basic Thermodynamics	
		(Mechanical Engineering)	
	Ν	iax. Marks: 70 Time: 3 Hours	S
	Aı	nswer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$)

		UNIT-I	
	a)	What is meant by displacement work? Explain the same with reference to the Quasi-static	
•	u)	process.	
	b)	Classify the types of thermodynamic systems with the help of suitable example.	
		OR	
•	a)	To a closed system 150 KJ of work is supplied. If the initial volume is 0.6 m^3 and the	
		pressure of the system changes as p=8 - 4V where p is in bar and V is in m ³ , determine the	
	b)	final volume and pressure of the system.	
	b)	Derive the general steady flow energy equation and deduce SFEE for Turbine.	
	a)	Discuss about the limitations of First law of Thermodynamics	
•	b)	A reversible heat engine operates between a source at 800°C and sink at 30°C. What is the	
	2)	least rate of heat rejection per KW network output of the engine?	
		OR	
-	a)	Write a short notes on Third law of Thermodynamics	
	b)	Three Carnot Heat Engines HE1, HE2, HE3 are connected in series. They are working with	
		same thermal efficiency. The heat supplied to the entire system is 2400 kW and heat	
		rejected from entire system is 300 kW Calculate work done for each engine.	
		A vessel having a capacity of 0.05 m ³ contains a mixture of saturated water and saturated	
•		steam at a temperature of 245 C. the mass of the liquid present is 10 kg. Calculate the	
		pressure, mass, specific volume, specific enthalpy, specific entropy, and specific internal	
		energy.	
	\sim	OR What is a pure substance?	
•	a) b)	Steam enters in an engine at a pressure of 10 bar absolute and 250°C. It is exhausted at	
	0)	0.2 bar. The steam exhaust is 0.9dry. Find i) drop in enthalpy, ii) Change in entropy	
		UNIT-IV	
•		One kg of CO ₂ has a volume of 1 m ³ at 100°C. Compute the pressure by	
		a) Vander Waal's equation	
		b) Perfect gas equation The Vander Waal's constants $a = 362850 \text{ Nm}^4 / (\text{kg-mol})^2$ and $b = 0.0422 \text{ m}^3 / (\text{kg-mol})$	
		b=0.0423 m ³ /(kg-mol). OR	
	a)	Derive the expressions for heat transfer and work done during a reversible isothermal	
•	u)	process.	
	b)	Explain Throttling process and Free expansion process.	
		UNIT-V	
•	a)	State Avogadro's law of Additive volumes.	
	b)	A gas mixture consists of 0.4kg of carbon monoxide and 1.1 kg of carbon dioxide Calculate	
		the mass fraction, mole fraction, molar mass and gas constant.	
		OR	
	a)	Explain Mass fraction .Mole fraction, Internal energy and specific heat of gas mixtures	