					-0		-					-				
F	all Ticket Number :															
С	ode: 20A333T													R-20		
•	II B.Tech. I	Sen	nest	er S	upp	lem	nent	ary I	Exar	ninc	atior	ns Jul	y 202	3		
			E	Basi	c Th	nern	noc	lynd	imic	:s			-			
				(Me	cha	nicc	al En	igine	ering	g)				0.11		
N	lax. Marks: 70					****	****	*					lır	ne: 3 Ho	Urs	
N	ote: 1. Question Pap	er coi	nsist	s of t	two	parts	s (Pa	rt-A	and F	Part-	B)					
	2. In Part-A, each						-				-					
	3. Answer ALL th	e que	estio	ns in	Par				3							
					_		RT-A	-	,							
					-			uestic	•					~~		
	. Answer all the follo	-				•			(5X		10M)		CO	BL	
a b	, o		•			a no	n-fio	w pro	cess					1 2	L2 L1	
b) Define dryness frac		ieve	151011	ity.									2	L1 L1	
) What is compressib		acto	·?										4	L1	
) Sketch the Otto cyc	•			T-S	plan	es a	nd na	ime a	all the	e pro	cesse	es.	5	L2	
-	,,					•	RT-E							-		
	Answer five question	ons by	y ch	oosi	ng o	ne q	uest	tion f	rom	each	uni [:]	t (5 x	12 = 6	60 Marks)	
														Marks	СО	
2.	A system contains expanded adiabatic constant pressure t transfer and heat tra	ally ti ill its	ill the enth	e pres alpy	jas a ssure incre C _P =1	e falls eases kJ/l	s to s by	1 bar. 100 l	The (J. D	gas eterr	is the	en he the n	ated at	:	1	
						OR										
3.	10kg of fluid per m properties of fluid a kJ/kg and at exit a During the passage i) Change in enthal	t inlet re p ₂ e, the	t are =5.5 fluid	p₁=´ bar, rejeo	1.5 b 2=5 cts 5 ne du	ar, 5.5 kg 5kJ/s	₁=26 g/m³ s and	∂ kg/n ,v₂=1 d rise	∩ ³ ,∨₁= 90 m s thrc	=110 /s ar	m/s nd u ₂	and u =710	ı₁=910 kJ/kg.		1	I
4.	Two reversible he rejecting heat direc 421°C from a hot s at a temperature of intermediate tempe and c) the heat reje	tly to ource 4.4°(rature	engi e, wh C. If t e bet	ne B ile e the w wee	. Enq ngine vork n A a	gine e B i outp	A re s in ut of	ceive comn A is t	s 200 nunic twice) kJ a atior that	at ter with of B	npera n a co , Find	iture of Id sink a) the	:	2	ļ
					(OR										
5.	A heat pump workin and delivers heat reversible heat eng rejects heat to a re machine that absor reservoir, determine the rate of heat reje	to a gine v servo bs 30 e a) ti	rese whicl bir at) kW he ra	ervoir n tak 60 ° . If tl ate o	at es i C. T ne he f hea	60 ° n he The r eat p at su	C. T at fr ever oump pply	The h rom a rsible o extra from	eat (reso heat acts	pump ervoi eng 17 k.	o is r at ine a J/s fr	driver 840 ^c Ilso d om th	n by a PC and rives a le 5 °C	L 	2	

Code: 20A333T

	UNIT–III			
6.	One kg of steam at 10 bar exists at a following conditions			
	(i) Wet and 0.8 dry (ii) Dry and Saturated (iii) At a temperature of 199.9 °C			
	Determine the Enthalpy, Specific Volume, Density, Internal Energy and			
	Entropy in each case. Take C _{ps} = 2.25 kJ/kg K	12M	3	L3
	OR			
7.	Derive the Clausuis- clapeyron equation.	12M	3	L2
	UNIT–IV			
8.	A gaseous mixture contains 21% by volume of nitrogen, 50% by volume of			
	hydrogen, and 29% by volume of carbon-dioxide. Calculate			
	I. The molecular weight of the mixture,			
	II. The characteristic gas constant for the mixture			
	III. The value of the reversible adiabatic index			
	(At 10°C, the C_P values of nitrogen, hydrogen, and carbon dioxide are I.039,			
	14.235, and 0.828 kJ/kg K respectively.)	12M	4	L3
	OR			
9.	Determine the specific volume of water vapour at 110 bar and 841 K by using			
	i. The ideal gas equation of state			
	ii. The principle of corresponding states			
	iii. The super heat steam table			
	iv. Also calculate percentage of error in the volume obtained by ideal gas			
	equation and that by the principle of corresponding states			
	Take P_{C} = 221.2 bar and T_{C} =647 K. Use generalized compressibility chart.	12M	4	L3
	UNIT–V			
10.	For air standard diesel cycle the following data is available:			
	Compression ratio $=$ 16			
	Heat added/kg = 2500 kJ/kg			
	Lowest temperature in the cycle $=$ 300 K			
	Lowest pressure in the cycle $=$ 1 bar			
	Calculate: i) pressure and temperature at each point in the cycle ii) Thermal			
	efficiency iii) Mean effective pressure if air flow rate of 0.25 kg/sec.	12M	5	L3
	OR			
11.	The minimum pressure and temperature in an Otto cycle are 100 kPa and 27°C. The amount of heat added to the air per cycle is 1500 kJ/kg.			
	(i) Determine the pressures and temperatures at all points of the air standard			
	Otto cycle. (ii) Also calculate the specific work and thermal efficiency of the			
	cycle for a compression ratio of 8 : 1. Take for air : $Cv = 0.72 \text{ kJ/kg K}$, and			_
	=1.4.c	12M	5	L3
	*** ᄃᇊᅯ ***			

*** End ***

Hall Ticket Number :			
Code: 20A332T)	
II B.Tech. I Semester Supplementary Examinations July Manufacturing Processes	2023		
(Mechanical Engineering)			
Max. Marks: 70 ********	Time: 3	3 Hours M) CO BL CO1 L1 CO2 L2 CO3 L1 CO4 L1 CO5 L2 M CO1 L2 M CO1 L2 M CO1 L2 M CO1 L3 M CO1 L3 M CO1 L3 M CO2 L3 M CO2 L3 M CO2 L3	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
	(2 = 10M) (O BL
a) Enumerate types of patterns.			O1 L1
b) How do you classify welding processes?		С	02 L2
c) What are the defects in rolled products?		С	O3 L1
d) Explain drop forging.		С	O4 L1
e) Write methods of steel making.		С	O5 L2
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x		-	וח
UNIT–I	Marks	CO	BL
	in		
'centrifugal casting' process?		CO1	L2
	ly		
incorporated into a casting pattern and describe any two	6M	CO1	L3
OR		 A) CO BL CO1 L1 CO2 L2 CO3 L1 CO4 L1 CO5 L2 arks) CO1 L2 CO1 L2 CO1 L2 CO1 L2 CO1 L2 CO1 L3 CO1 L2 CO1 L3 CO1 L3 CO1 L3 CO2 L3 	
a) Explain steps involved in making castings.	6M	CO1	L2
 b) Examine Gating ratio and design of Gating systems. UNIT–II 	6M	CO1	L3
Discuss with neat sketch the various components of O	(y		
Acetylene gas welding and explain the welding cutting	•		
process?	12M	CO2	L3
OR			
a) Explain working principle of ARC welding with a new			
sketch.		CO2	L2
 b) Sketch friction stir welding set up and explain its workir principle. 	Time: 3 Hours Time: 3 Hours Time: 3 Hours Transform		
L	0.01	002	20

	UNIT–III			
6. a)	Compare cold and hot working processes.	6M	CO3	L4
b)	Recommend which type of press working processes suitable to which application.	6M	CO3	L5
	OR			
7. a)	Explain strain hardening.	6M	CO3	L4
b)	Estimate what defects found in cold and hot working processes.	6M	CO3	15
	UNIT-IV		000	20
8. a)	How do you classify extrusion processes and explain any			
0. 0,	one extrusion process.	6M	CO4	L2
b)	Enumerate tools and dies required for forging process.	6M	CO4	L3
	OR			
9. a)	Discuss Impact extrusion process with a neat sketch.	6M	CO4	L2
b)	Explain Drop forging process and mention applications of			
	these products.	6M	CO4	L3
	UNIT–V			
10. a)	Describe the injection molding process?	6M	CO5	L1
b)	Explain Blow molding.	6M	CO5	L2
	OR			
11. a)	Elaborate steel making using Bessemer converter?	6M	CO5	L1
b)	Discuss Injection molding process.	6M	CO5	L2
	*** End ***			

Г

Н	all Ticket Number :																
Co	ode: 20A331T				<u> </u>								F	R-20			
	ll B.Tech	.ISem	ester	Sup	ople	mer	ntar	/ Ex	ami	nat	ior	is Ju	ly 202	23			
			1	Мес	:har	nics	of S	Solic	ds								
			(N	<i>lect</i>	nanio	cal E	ngir	neer	ing)								
	Max. Marks: 70				**	****	***						Ti	me: 3	Hour	S	
No	ote: 1. Question Pape 2. In Part-A, each	n questio	on car	ries 7	Гwo	mar	ks.		Part-	B)							
	3. Answer ALL	ine ques	uons	III F a		ART		ι-D									
				(Co		lsory		tion)								
1. A	nswer all the follow	ina sho	rt ans		_	-	-			M)					со	в	L
a)	Explain the term " co	-			-				-	,					1		2
b)	A cantilever beam s bending moment in			•										imum	2		3
c)	What is the value of	bending	stres	s at i	neutr	al ax	is of	a be	am						3		1
d)	What are the typica integration method t													louble	4		1
e)	Determine the natur	e of circ	umfer	entia	l and	long	itudi	nal s	tress	es i	n a	thin	cylinde	er.	5		2
					<u>P</u>	ART	<u>-B</u>										
An	swer five questions	by cho	osing	one	que	stior	n fro	m ea	ach u	nit ((5)	x 12	= 60 N	larks))		
														Ma	rks C	0	BL

2. a) The bar shown in Figure. 1 is tested in universal testing machine. It is observed that at a load of 40 KN the total extension of the bar is 0.280 mm. Determine the Young's modulus of the material.

UNIT-I

b) A brass bar having Cross sectional area of 1000 mm² is subjected to axial forces as shown in figure. Find total elongation of the bar. Take E=1.05x10⁵ N/mm².

	8 <u>C</u>	Q			
50 161	80 KH 20 KH	NH OF			
14 80	0 mm pie 1 m 0je 1.2		6M	1	3
	OR				

- 3. a) A steel rail is 12 m long and is laid at a temperature of 18°C. The maximum temperature expected is 40°C. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $= 12 \times 10^{-6} / ^{\circ}\text{C}$.
 - (i) Estimate the minimum gap between two rails to be left so that the temperature stresses do not develop.
 - (ii) Calculate the temperature stresses developed in the rails, if: No expansion joint is provided.
 - b) Determine the strain energy stored in the wire, when it is stretched by a load of 1000 N, applied at its free end, while other end attached to a rigid support. The wire is of 3m long and cross sectional area of 4 mm². Take modulus of elasticity of the wire as 2.0 × 10⁵ N/mm².

6M 1 3

1

3

6M

12M

2

3

UNIT–II

4. Draw the shear force and bending moment diagrams for the beam shown in Figure.

- OR
- 5. A beam of length is 10m is simply supported and carries point loads of 6kN each at a distance of 2m and 8m from left support and also a uniformly distributed load of 4kN/m between the point loads. Draw the S.F.D and B.M.D.

UNIT–III

6. The shear force acting on the beam of I- section with unequal flanges is 50 kN. The section is shown in figure. Calculate the shear stress at the N.A. and also draw the shear stress distribution over the depth of the section.

12M 3 3

OR 7. A symmetrical I-section beam of 10mmx350mm web, 150x20 mm flanges is 4m long is simply supported at both ends. If the beam is subjected to a central point load of 100kN, determine the maximum bending stress and bending stress at a point 10mm above the N.A. and 1.5m from right support. 3 12M 3 UNIT-IV A cantilever of length 2.6m carries a uniformly distributed load of 16.5kN/m over 8. the entire length. If moment of inertia of the beam is 7.90 x 10⁷ mm⁴, and value of $E = 2 \times 10^5 \text{ N/mm}^2$, determine the deflection at the free end 12M 3 4 OR 9. Find the maximum deflection of a simply supported beam of 4m length with an eccentric point load of 6kN at 1m from the right support. Take EI = 55000 KN/m². 12M 3 4 UNIT-V A cylindrical vessel is 1.2m diameter, thickness 7mm and 4m long is closed at 10. ends. If it is subjected to an internal pressure of 4 N/mm², find the change in dimensions of the vessel. Assume $E=2 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio=0.28. 12M 5 3 OR 11. A cylindrical shell 1m long, 180mm internal diameter, thickness of metal 8mm is filled with a fluid at atmospheric pressure. If an additional 30cm³ of the fluid is pumped in to the cylinder. Find the pressure exerted by the fluid on the wall of the cylinder and also find the hoop stress is induced take E=2×10⁵ N/mm² and Poisson's ratio=0.3 12M 5 3

END

R-20 Il B.Tech. I Semester Supplementary Examinations July 2023 Partial Differential Equations and Numerical Methods (Common to CE and ME) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) Time: 3 Hours 2. In Part-A, each question carries Two marks. Reach question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO3 L2 d) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. CO3 L2 d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 UNIT-I Image: Co Marks CO L1 e) State top and places GM CO1 L1 i) Marks CO B Marks CO L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1
Partial Differential Equations and Numerical Methods (Common to CE and ME)Max. Marks: 70Time: 3 HoursMax. Marks: 70*********************************
(Common to CE and ME)Max. Marks: 70Time: 3 Hours********Note: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two marks .3. Answer ALL the questions in Part-A and Part-BPART-A (Compulsory question)1. Answer all the following short answer questions $(5 X 2 = 10M)$ a) Establish a iterative formula to find \sqrt{N} CO1b) State Lagrange's interpolation formula for unequal intervals.CO2c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1 PART-BAnswer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^* = 4 \sin x$ correct to three decimal placesb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.GM CO1
Max. Marks: 70Time: 3 HoursNote: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two marks .3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ a) Establish a iterative formula to find \sqrt{N} CO1b) State Lagrange's interpolation formula for unequal intervals.CO2c) Write $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ at x_0 using forward differences.CO3d) Write the formula to find $K_2 K_4$ in R-K method of 4 th order.CO4L1PART-BAnswer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal placesb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M CO1L
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$ CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx^2}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B <u>UNIT-I</u> 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$ CO BL a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
PART-A (Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1PART-BMarks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places6MCO1Lb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6MCO1L
(Compulsory question)1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1Marks CO BUNIT-I2. a) Using the bisection method, find a real root of the equation $e^x = 4\sin x$ correct to three decimal places6Mb) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M
1. Answer all the following short answer questions $(5 \times 2 = 10M)$ COBLa) Establish a iterative formula to find \sqrt{N} CO1L3b) State Lagrange's interpolation formula for unequal intervals.CO2L1c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences.CO3L2d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order.CO4L1e) State 1-D and 2-D steady state heat flow equationCO5L1PART-BAnswer five questions by choosing one question from each unit (5 x 12 = 60 Marks)MarksCOB2. a) Using the bisection method, find a real root of the equation $e^x = 4\sin x$ correct to three decimal places6MCO1b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6MCO1L
a) Establish a iterative formula to find \sqrt{N} CO1 L3 b) State Lagrange's interpolation formula for unequal intervals. CO2 L1 c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. CO3 L2 d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. CO4 L1 e) State 1-D and 2-D steady state heat flow equation CO5 L1 <u>PART-B</u> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
b) State Lagrange's interpolation formula for unequal intervals. c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. Marks CO 1 L
c) Write $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x_0 using forward differences. d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. GO3 L2 CO3 L2 CO3 L2 CO4 L1 CO4 L1 CO5 L1 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB OB
d) Write the formula to find K ₂ K ₄ in R-K method of 4 th order. e) State 1-D and 2-D steady state heat flow equation $\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
e) State 1-D and 2-D steady state heat flow equation <u>PART-B</u> Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B <u>UNIT-I</u> 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.
Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks) Marks CO B UNIT-I 2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places 6M CO1 L b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method. 6M CO1 L
2. a) Using the bisection method, find a real root of the equation $e^x = 4 \sin x$ correct to three decimal places b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.
 UNIT-I 2. a) Using the bisection method, find a real root of the equation e^x = 4 sin x correct to three decimal places b) Find a positive root of the equation x⁴ - x = 10, Using Newton Raphson method. 6M CO1 L
 2. a) Using the bisection method, find a real root of the equation e^x = 4 sin x correct to three decimal places b) Find a positive root of the equation x⁴ - x = 10, Using Newton Raphson method. 6M CO1 L
b) Find a positive root of the equation $x^4 - x = 10$, Using Newton Raphson method.6M CO1 L 6M CO1 L
method. 6M CO1 L
OR
3. a) Find a root of the equation $x^3 - 4x - 9 = 0$ using the regula-falsi method. 6M CO1 L
b) Find a root of the $\cos x - 3x + 1 = 0$ by choosing Iteration method. 6M CO1 L
UNIT–II
4. a) Construct Newton's forward interpolation polynomial for the following data.
x 4 6 8 10 y 1 3 8 16 6M CO2 L
b) Estimate the valued <i>f</i> (42) from the following data.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
f(x) 354 332 291 260 231 204 6M CO2 L
OR
5. a) From the following table of half yearly premium for policies maturing at
different ages, estimate the premium for policies maturing at the age 46.

Age	45	50	55	60			
Premium in Rupees	100	122	153	178	6M	CO2	L3

Code: 20AC31T

b) Using Lagrange's formula find the value of y when x = 10.

Х	5	6	9	11
у	12	13	14	16

6M CO2 L3

UNIT-III

	6.	Given that											
			X	1.0	1.2	1.4	1.6	1.8	2.0				
			Y	0	0.128	0.544	1.296	2.432	4.000				
		Find $\frac{dy}{dx}$ and	$\frac{d^2 y}{dx^2}$, - at <i>x</i> =	= 1.1						12M	CO3	L4
						OR							
7.	a)	Calculate the	value	e of $\int_{0}^{\frac{f}{2}}$	sin <i>x dx</i>	by Sim	pson's ´	I/3 rule,	using 1	1 ordinates.	CM	000	
											6M	CO3	L3
	b)	Using Trapezo	oidal	rule Es		$e^{x^2}dx$	aking 1) interva	als.		6M	CO3	L3
						UNIT-	IV						
	8.						to find y	/ when >	x = 1.2 i	n steps of 0.1,			
		given that $\frac{dy}{dx}$	$=x^{2}$	+ y ² a	nd y(1)=						12M	CO4	L4
						OR							
9.	a)	Solve $y^1 = 1 -$	у, :	y(0) = 0	0 by moo	dified Eu	iler's me	ethod an	id obtair	y at x = 0.1.	6M	CO4	L3
	b)	Find an app	oroxin	nate	value c	of y w	hen x	= 0.1,	if $\frac{dy}{dx}$	$x = x - y^2$ and			
		y = 1 at $x = 0, u$	using	Picaro	d's meth	od.					6M	CO4	L3
						UNIT-							
	10.	on opposite si	des o n ex	of the pression	position on for th	of equil	ibrium a acemen	ind the st t of the	string is string a	same distance released from at subsequent rest.	12M	CO5	L4
						OR							
	11.	An insulated respectively u maintained at	ntil s	steady	state p	revail. I rature a	f B is s	uddenly	reduce	ed to 0°C and	12M	CO5	L4

L			R-20		
		Le: 20A235T II B.Tech. I Semester Supplementary Examinations July 20	103		
		Basic Electrical and Electronics Engineering	525		
		(Mechanical Engineering)			
	Max	x. Marks: 70	Time: 3 Ho	Urs	

	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u>			
	1	(Compulsory question)	СО	BL	
		Answer all the following short answer questions (5 X 2 = 10M) Examine the difference between power and energy	1	2	
		Enumerate the speed control methods of DC motor	2	2	
		State the principle of operation of 1Ø transformer	3	2	
		Mention the applications of PN Junction diode	4	2	
		Justify the need for earthing	5	2	
	0, 0		0	-	
		$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 N	Marks)		
			Marks	со	
		UNIT–I			
2.	a)	Explain in detail about Lenz's law	6M	1	
	b)	Distinguish between Fleming's right hand and Fleming's left hand rule	6M	1	
_	,	OR			
3.	a)	Compare and contrast the properties of series and parallel circuits	8M	1	
	b)	Interpret the need of connecting all the electrical appliances in parallel	4M	1	
4.	a)	UNIT–II Derive an expression for emf of DC generator	8M	2	
т.	b)	Outline in brief the various types of generators and their applications	4M	2	
	0)	OR	1101	2	
5.	a)	Explicate the principle of operation of DC motor	7M	2	
	b)	Discuss in brief about Swinburne's test	5M	2	
		UNIT–III			
6.		How do you calculate efficiency and regulation using OC and SC tests of		_	
		transformer?	12M	3	
7.		OR Illustrate with neat sketch brake Test on 3- induction motor	12M	3	
				0	
8.	a)	Analyze the working of PN Junction diode based on their V-I characteristics	8M	4	
	b)	Infer the need of using full wave rectifier over half wave rectifier	4M	4	
	,	OR			
9.		With relevant input and output characteristic curves explain the operation of			
		configuration NPN transistor	12M	4	
n		UNIT-V	10 4014	F	
).		Describe the procedure to measure voltage, current and frequency using CRC OR	D? 12M	5	
1.		Evaluate the role of SFU and MCB in electrical installations	12M	5	
-		*** End ***		•	