Hall Ticket Number : \square

Code: 20A333T

R-20

II B.Tech. I Semester Supplementary Examinations July 2023 Basic Thermodynamics

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Distinguish between 'flow process' and 'non-flow process'.
b) Mention few causes of irreversibility.

CO BL
c) Define dryness fraction.
d) What is compressibility factor?

3 L1
e) Sketch the Otto cycle on P-V and T-S planes and name all the processes.

4 L1
5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A system contains $0.2 \mathrm{~m}^{3}$ of a gas at a pressure of 4 bar and $150{ }^{\circ} \mathrm{C}$. It is expanded adiabatically till the pressure falls to 1 bar. The gas is then heated at constant pressure till its enthalpy increases by 100 KJ . Determine the network transfer and heat transfer. Take $\mathrm{C}_{\mathrm{P}}=1 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{C}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kgK}$. 12M

OR

3. 10 kg of fluid per minute goes through a reversible steady flow process. The properties of fluid at inlet are $p_{1}=1.5$ bar, $\rho_{1}=26 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{v}_{1}=110 \mathrm{~m} / \mathrm{s}$ and $\mathrm{u}_{1}=910$ $\mathrm{kJ} / \mathrm{kg}$ and at exit are $\mathrm{p}_{2}=5.5 \mathrm{bar}, \rho_{2}=5.5 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{v}_{2}=190 \mathrm{~m} / \mathrm{s}$ and $\mathrm{u}_{2}=710 \mathrm{~kJ} / \mathrm{kg}$. During the passage, the fluid rejects $55 \mathrm{~kJ} / \mathrm{s}$ and rises through 55 m . Determine i) Change in enthalpy (ii) Work done during the process.

UNIT-II

4. Two reversible heat engines A and B are arranged in series; Engine A rejecting heat directly to engine B. Engine A receives 200 kJ at temperature of $421^{\circ} \mathrm{C}$ from a hot source, while engine B is in communication with a cold sink at a temperature of $4.4^{\circ} \mathrm{C}$. If the work output of A is twice that of B, Find a) the intermediate temperature between A and B, b) the efficiencies of each engine and c) the heat rejected to cold sink.

OR

5. A heat pump working on the Carnot cycle takes in heat from a reservoir at $5^{\circ} \mathrm{C}$ and delivers heat to a reservoir at $60^{\circ} \mathrm{C}$. The heat pump is driven by a reversible heat engine which takes in heat from a reservoir at $840^{\circ} \mathrm{C}$ and rejects heat to a reservoir at $60^{\circ} \mathrm{C}$. The reversible heat engine also drives a machine that absorbs 30 kW . If the heat pump extracts $17 \mathrm{~kJ} / \mathrm{s}$ from the $5^{\circ} \mathrm{C}$ reservoir, determine a) the rate of heat supply from the $840{ }^{\circ} \mathrm{C}$ source and b) the rate of heat rejection to the $60^{\circ} \mathrm{C}$ reservoir.

UNIT-III

6. One kg of steam at 10 bar exists at a following conditions
(i) Wet and 0.8 dry
(ii) Dry and Saturated
(iii) At a temperature of $199.9{ }^{\circ} \mathrm{C}$

Determine the Enthalpy, Specific Volume, Density, Internal Energy and Entropy in each case. Take $\mathrm{C}_{\mathrm{ps}}=2.25 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

OR
7. Derive the Clausuis- clapeyron equation.

UNIT-IV

8. A gaseous mixture contains 21% by volume of nitrogen, 50% by volume of hydrogen, and 29% by volume of carbon-dioxide. Calculate
I. The molecular weight of the mixture,
II. The characteristic gas constant for the mixture
III. The value of the reversible adiabatic index y
(At $10^{\circ} \mathrm{C}$, the C_{P} values of nitrogen, hydrogen, and carbon dioxide are I.039, 14.235 , and $0.828 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ respectively.)

OR

9. Determine the specific volume of water vapour at 110 bar and 841 K by using
i. The ideal gas equation of state
ii. The principle of corresponding states
iii. The super heat steam table
iv. Also calculate percentage of error in the volume obtained by ideal gas equation and that by the principle of corresponding states
Take $P_{c=2} 221.2$ bar and $T_{c}=647 \mathrm{~K}$. Use generalized compressibility chart. $12 \mathrm{M} 4 \quad \mathrm{~L} 3$
UNIT-V
10. For air standard diesel cycle the following data is available:

Compression ratio $=16$
Heat added/kg $=2500 \mathrm{~kJ} / \mathrm{kg}$
Lowest temperature in the cycle $=300 \mathrm{~K}$
Lowest pressure in the cycle = 1 bar
Calculate: i) pressure and temperature at each point in the cycle ii) Thermal efficiency iii) Mean effective pressure if air flow rate of $0.25 \mathrm{~kg} / \mathrm{sec}$.
11. The minimum pressure and temperature in an Otto cycle are 100 kPa and $27^{\circ} \mathrm{C}$. The amount of heat added to the air per cycle is $1500 \mathrm{~kJ} / \mathrm{kg}$.
(i) Determine the pressures and temperatures at all points of the air standard Otto cycle. (ii) Also calculate the specific work and thermal efficiency of the cycle for a compression ratio of $8: 1$. Take for air : $\mathrm{Cv}=0.72 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, and $\gamma=1.4$. c
\square
Code: 20A332T
II B.Tech. I Semester Supplementary Examinations July 2023

Manufacturing Processes

(Mechanical Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions
a) Enumerate types of patterns.
b) How do you classify welding processes?
c) What are the defects in rolled products? CO3
d) Explain drop forging.
e) Write methods of steel making.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Classify special casting processes and explain 'centrifugal casting' process?
$6 \mathrm{M} \mathrm{CO1}$ L2
b) What are the pattern allowances are generally
incorporated into a casting pattern and describe any two? 6 M CO1 L3 OR
3. a) Explain steps involved in making castings. 6M CO1 L2
b) Examine Gating ratio and design of Gating systems.
$6 \mathrm{M} \mathrm{CO}_{\mathrm{L}} \mathrm{L} 3$

UNIT-II

4. Discuss with neat sketch the various components of Oxy Acetylene gas welding and explain the welding cutting process?

12M Co2 L3

OR

5. a) Explain working principle of ARC welding with a neat sketch.
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$
b) Sketch friction stir welding set up and explain its working principle.

6M CO2 L3

UNIT-III

6. a) Compare cold and hot working processes.b) Recommend which type of press working processessuitable to which application.OR
7. a) Explain strain hardening. 6 M CO3 L4
b) Estimate what defects found in cold and hot working processes. 6 M CO3 L5$6 \mathrm{M} \mathrm{CO3} \mathrm{L5}$

6M CO3 L4
$6 M_{\text {CO3 }}$ L5
,
UNIT-IV
8. a) How do you classify extrusion processes and explain any one extrusion process.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Enumerate tools and dies required for forging process. $6 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 3$

OR

9. a) Discuss Impact extrusion process with a neat sketch. 6M co4 L2
b) Explain Drop forging process and mention applications of these products.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$

UNIT-V

10. a) Describe the injection molding process? 6 M CO5 L1
b) Explain Blow molding. 6 M CO5 L2
OR
11. a) Elaborate steel making using Bessemer converter? 6M CO5 L1
b) Discuss Injection molding process. $6 \mathrm{M} \mathrm{CO5}$ L2
*** End ***

II B.Tech. I Semester Supplementary Examinations July 2023
Mechanics of Solids
(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Explain the term " complementary shear stress"
b) A cantilever beam subjected to a point load of 1.5 kN at its free end. If the maximum bending moment in the beam is $6 \mathrm{kN}-\mathrm{m}$, determine the length of the beam.
c) What is the value of bending stress at neutral axis of a beam
d) What are the typical boundary conditions used in finding the constants in the double integration method to find slope and deflection of a simply supported beam.
e) Determine the nature of circumferential and longitudinal stresses in a thin cylinder.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) The bar shown in Figure. 1 is tested in universal testing machine. It is observed that at a load of 40 KN the total extension of the bar is 0.280 mm . Determine the Young's modulus of the material.

$6 \mathrm{M} \quad 1 \quad 3$
b) A brass bar having Cross sectional area of $1000 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in figure. Find total elongation of the bar. Take $E=1.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

OR
3. a) A steel rail is 12 m long and is laid at a temperature of $18^{\circ} \mathrm{C}$. The maximum temperature expected is $40^{\circ} \mathrm{C}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
(i) Estimate the minimum gap between two rails to be left so that the temperature stresses do not develop.
(ii) Calculate the temperature stresses developed in the rails, if: No expansion joint is provided.
b) Determine the strain energy stored in the wire, when it is stretched by a load of 1000 N , applied at its free end, while other end attached to a rigid support. The wire is of 3 m long and cross sectional area of $4 \mathrm{~mm}^{2}$. Take modulus of elasticity of the wire as $2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT-II
4. Draw the shear force and bending moment diagrams for the beam shown in Figure.

5. A beam of length is 10 m is simply supported and carries point loads of 6 kN each at a distance of 2 m and 8 m from left support and also a uniformly distributed load of $4 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw the S.F.D and B.M.D.

UNIT-III

6. The shear force acting on the beam of I-section with unequal flanges is 50 kN . The section is shown in figure. Calculate the shear stress at the N.A. and also draw the shear stress distribution over the depth of the section.

OR

7. A symmetrical I-section beam of $10 \mathrm{~mm} \times 350 \mathrm{~mm}$ web, $150 \times 20 \mathrm{~mm}$ flanges is 4 m long is simply supported at both ends. If the beam is subjected to a central point load of 100 kN , determine the maximum bending stress and bending stress at a point 10 mm above the N.A. and 1.5 m from right support.

UNIT-IV

8. A cantilever of length 2.6 m carries a uniformly distributed load of $16.5 \mathrm{kN} / \mathrm{m}$ over the entire length. If moment of inertia of the beam is $7.90 \times 10^{7} \mathrm{~mm}^{4}$, and value of $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the deflection at the free end

OR
9. Find the maximum deflection of a simply supported beam of 4 m length with an eccentric point load of 6 kN at 1 m from the right support. Take $\mathrm{El}=55000 \mathrm{KN} / \mathrm{m}^{2}$.

UNIT-V

10. A cylindrical vessel is 1.2 m diameter, thickness 7 mm and 4 m long is closed at ends. If it is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$, find the change in dimensions of the vessel. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.28$.

OR

11. A cylindrical shell 1 m long, 180 mm internal diameter, thickness of metal 8 mm is filled with a fluid at atmospheric pressure. If an additional $30 \mathrm{~cm}^{3}$ of the fluid is pumped in to the cylinder. Find the pressure exerted by the fluid on the wall of the cylinder and also find the hoop stress is induced take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$
\square
Code: 20AC31T
II B.Tech. I Semester Supplementary Examinations July 2023

Partial Differential Equations and Numerical Methods

(Common to CE and ME)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Establish a iterative formula to find \sqrt{N}
b) State Lagrange's interpolation formula for unequal intervals.
c) Write $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at x_{0} using forward differences.
d) Write the formula to find $\mathrm{K}_{2} \mathrm{~K}_{4}$ in R-K method of $4^{\text {th }}$ order.
e) State 1-D and 2-D steady state heat flow equation

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Using the bisection method, find a real root of the equation $e^{x}=4 \sin x$ correct to three decimal places
b) Find a positive root of the equation $x^{4}-x=10$, Using Newton Raphson method.

OR

3. a) Find a root of the equation $x^{3}-4 x-9=0$ using the regula-falsi method.

6M CO1
L3
b) Find a root of the $\cos x-3 x+1=0$ by choosing Iteration method.

6M CO1
L4

UNIT-II

4. a) Construct Newton's forward interpolation polynomial for the following data.

x	4	6	8	10
y	1	3	8	16

6M CO2 L3
b) Estimate the valued $f(42)$ from the following data.

X	20	25	30	35	40	45
$f(x)$	354	332	291	260	231	204

OR

5. a) From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at the age 46.

Age	45	50	55	60
Premium in Rupees	100	122	153	178

b) Using Lagrange's formula find the value of y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

UNIT-III

6. Given that

X	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	0.128	0.544	1.296	2.432	4.000

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$
12M CO3 L4

OR

7. a) Calculate the value of $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Simpson's $1 / 3$ rule, using 11 ordinates.
b) Using Trapezoidal rule Estimate $\int_{0}^{2} e^{x^{2}} d x$ taking 10 intervals.

6 M CO3 L3

UNIT-IV

8. Use Runge-Kutta method of fourth order to find y when $x=1.2$ in steps of 0.1 , given that $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(1)=1.5$.

OR

9. a) Solve $y^{1}=1-y, \quad y(0)=0$ by modified Euler's method and obtain y at $x=0.1$.
b) Find an approximate value of y when $x=0.1$, if $\frac{d y}{d x}=x-y^{2}$ and $y=1$ at $x=0$, using Picard's method.

UNIT-V

10. The points of trisection of a string are pulled a side through the same distance on opposite sides of the position of equilibrium and the string is released from rest. Derive an expression for the displacement of the string at subsequent time and show that the mid-point of the string always remains at rest.

12M CO5 L4

OR

11. An insulated rod of length / has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t .

12M CO5 L4

Code: 20A235T

II B.Tech. I Semester Supplementary Examinations July 2023
Basic Electrical and Electronics Engineering
(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.

3. Answer ALL the questions in Part-A and Part-B
 PART-A
 (Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Examine the difference between power and energy 1
b) Enumerate the speed control methods of DC motor 2
c) State the principle of operation of $1 \varnothing$ transformer 3
d) Mention the applications of PN Junction diode 4
e) Justify the need for earthing 5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO
BL

UNIT-I

2. a) Explain in detail about Lenz's law
6M 13
b) Distinguish between Fleming's right hand and Fleming's left hand rule

OR
3. a) Compare and contrast the properties of series and parallel circuits
8M 13
b) Interpret the need of connecting all the electrical appliances in parallel

UNIT-II

4. a) Derive an expression for emf of DC generator
b) Outline in brief the various types of generators and their applications

OR

5. a) Explicate the principle of operation of DC motor

b) Discuss in brief about Swinburne's test
5M 23

UNIT-III

6. How do you calculate efficiency and regulation using OC and SC tests of $1 \varnothing$ transformer?

12M 35
OR
7. Illustrate with neat sketch brake Test on 3-Фinduction motor

12M $3 \quad 4$

UNIT-IV

8. a) Analyze the working of PN Junction diode based on their V-I characteristics
b) Infer the need of using full wave rectifier over half wave rectifier $4 \mathrm{M} \quad 4 \quad 5$

OR

9. With relevant input and output characteristic curves explain the operation of CE configuration NPN transistor
\square
10. Describe the procedure to measure voltage, current and frequency using CRO?

11.	Evaluate the role of SFU and MCB in electrical installations	12M	5
	*** End ***		

