\square

Code: 20A332T

R-20

|| B.Tech. I Semester Supplmentary Examinations August 2022

Manufacturing Processes

(Mechanical Engineering)
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co | Blooms |
| :---: |
| Level |

a) What is importance of riser in casting technology? 1
b) What is thermit welding and list its applications? 2
c) Explain principle of hot working process. 3
d) What is rotary swaging in forging process? 4
e) Explain principle of transfer molding 5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Explain Investment casting process with neat sketch. Describe any two applications of Investment casting process.

OR

3. What is pattern? Describe various types of patterns with neat sketch.

UNIT-II

4. Explain MIG welding process with neat diagram. List out advantages and applications of this process.

OR
5. What are heat affected zones in welding? Give remedies to minimize the heat affected zones. 12M 2

UNIT-III

6. Differentiate hot working and cold working. Compare blanking die and drawing die.
7. Describe mechanism of rolling process. Explain defects in Rolled products. 12M 3 2
UNIT-IV
8. Differentiate forward and backward extrusion process. Compare soldering, brazing and welding process.
12M 43
OR9. Explain forging process and its advantages. What arevarious defects in forging?12M 4
UNIT-V
9. Describe Methods of processing plastics. What aredesirable properties of plastic molding materials?12M 52
OR
10. What are methods used to produce metal powder?Explain any three methods of producing powder. 12M2
\square
Code: 20A331T

R-20

II B.Tech. I Semester Supplmentary Examinations August 2022
Mechanics of Solids
(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$)
a) Draw a typical stress-strain curve for mild steel and indicate the salient points.

1
b) Define the terms Shear force and Bending moment and write its sign conventions.
c) What do you understand by neutral axis and moment of resistance? 3
d) Write the slope and deflection equations for cantilever beam carrying UDL.
e) How does a thin cylinder fail due to internal fluid pressure?

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Derive an expression between Modulus of elasticity, Modulus of rigidity and the Poisson's ratio.
b) A steel tube of 30 mm external diameter and 25 mm internal diameter encloses a gun metal rod of 20 mm diameter to which it is rigidly joined at each end. The temperature of the whole assembly is raised to $140^{\circ} \mathrm{C}$ and the nuts on the rod are then screwed lightly home on the ends of the tube. Find the intensity of stress in the rod when the common temperature has fallen to $30^{\circ} \mathrm{C}$. The value of E for steel and gun metal is $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ respectively. The linear coefficient of expansion for steel and gun metal is $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $20 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

OR
3. a) Explain the terms Principal stresses and Principal planes. $4 \mathrm{M} \quad 1 \quad 2$
b) The principal tensile stresses at a point on two perpendicular planes are 60 MPa and 30 MPa . Find the normal, tangential and resultant stress and its obliquity on a plane at 20° with the major principal plane.Also find the intensity of stress which acting alone can produce the same maximum strain. Assume Poisson's ratio as 0.3.

UNIT-II

4. A Simply supported beam of length 5 m carries a uniformly increasing load of $800 \mathrm{~N} / \mathrm{m}$ run at one end to $1600 \mathrm{~N} / \mathrm{m}$ run at the other end. Draw the S.F and B.M diagrams for the beam. Also calculate the position and magnitude of maximum bending moment.

OR

5. Draw the S.F and B.M diagrams of a simply supported beam of length 7 m carrying uniformly distributed loads as shown in figure.

UNIT-III

6. a) Derive the bending equation from the first principles

5M 3
6
b) A timber beam of rectangular beam of length 8 m is simply supported. The beam carries a U.D.L of $12 \mathrm{KN} / \mathrm{m}$ run over the entire length and a point load of 10 KN at 3 m from the left support.If the depth is two times the width and the stress in the timber is not to exceed $8 \mathrm{~N} / \mathrm{mm}^{2}$. Find the suitable dimensions of the section.

7M 3

OR

7. a) Prove that the maximum shear stress in a circular section of a beam is $4 / 3$ times the average shear stress.

5M 3
b) A beam of cross section of an isosceles triangle is subjected to a shear force of 30 kN at a section where base width $=150 \mathrm{~mm}$ and height $=450 \mathrm{~mm}$. Determine:
(i) Horizontal shear stress at the neutral axis (ii) distance of the top of the section where shear stress is maximum and (iii) value of maximum shear stress.

7M 3

UNIT-IV

8. A beam of length 6 m is simply supported at its ends and carries two point loads of 48 KN and 40 KN at a distance of 1 m and 3 m respectively from the left support. Find:
(i) Deflection under each load (ii) maximum deflection and (iii) the point at which maximum deflection occurs. Given $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=85 \times 10^{6} \mathrm{~mm}^{4}$

OR

9. a) A cantilever of length 2 m carries a uniformly varying load of $25 \mathrm{KN} / \mathrm{m}$ at the free end to $75 \mathrm{KN} / \mathrm{m}$ at the fixed end, If $\mathrm{E}=1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$. Determine the slope and the deflection of the cantilever at the free end.
b) Derive an expression for maximum deflection of a simply supported beam carrying a Uniformly distributed load.

6M 4

UNIT-V

10. a) Derive the expressions for circumferential and longitudinal stresses for a thin shell subjected to an internal pressure
b) Calculate: (i) the change in diameter, (ii) change in length and (iii) change in volume of a thin cylindrical shell 100 cm diameter, 1 cm thick and 5 m long when subjected to internal pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. Take the value of $E=2 X 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poisson's ratio $=0.3$

OR

11. a) Derive the expressions for change in diameter, change in length and change in volume of a thin cylindrical shell subjected to an internal pressure ' P '.
b) A cylindrical thin drum 80 cm in diameter and 3 m long has a shell thickness of 1 cm .If the drum is subjected to an internal pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$, determine (i) change in diameter (ii) change in length and (iii) change in volume.
$5 \mathrm{M} \quad 5$
6
,
6
\square
Code: 20AC31T
II B.Tech. I Semester Supplmentary Examinations August 2022

Partial Differential Equations and Numerical Methods

(Common to CE and ME)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$
a) Explain the Method of false position. CO1
b) Define forward differences. CO2
c) Write formulas for first and second derivatives using Newton's backward interpolation formula.

CO3 L3
d) Explain Euler's method to solve the IVP

$$
\frac{d y}{d x}=f(x, y) \text { with } y\left(x_{0}\right)=y_{0} .
$$

e) Write the suitable solution of one dimensional heat equation.

CO5
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Find a real root of the equation $x \log _{10} x=1.2$ by regulafalsi method correct to four decimal places.

6M CO1
b) Develop an Iterative formula to find the $k^{\text {th }}$ root of a positive number N.Using Newton-Raphson method.
$6 \mathrm{M} \mathrm{CO1}$
(OR)
3. a) Using bisection method, compute the real root of the equation $x^{3}-x-11=0$.

6M CO1 L3
b) Find a real root of the equation $2 x-\log _{10} x=7$, using iteration method.

6M CO1

UNIT-II

4. a) Evaluate $\Delta\left(e^{x} \log 2 x\right)$.
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 2$
b) Using Newton's forward formula compute $f(142)$ from the following table:

x	140	150	160	170	180
$f(x)$	3.685	4.854	6.302	8.076	10.225
(OR)					

6M CO2 L4
(OR)
5. a) Use Lagrange's interpolation formula to find the value of y when $x=10$ if the following values of x and y are given.

x	5	6	9	11
y	12	13	14	16

6 M CO 2
L3
b) Find the polynomial $f(x)$ from the following data

x	0	1	4	5
y	4	13	24	39

UNIT-III

6. a) Determine $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $x=2$ from the following data

x	0	1	2	3	4	5
y	0	1	8	27	64	125

b) Evaluate $\int_{0}^{1} x^{3} d x$ with five sub-intervals by Trapezoidal

Rule
6 M CO3 L3 (OR)
7. a) Find $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simpson's $3 / 8^{\text {th }}$ rule taking $h=1 / 6$.
b) Evaluate, $\int_{0}^{2} e^{-x^{2}} d x$ by using Trapezoidal rule and

Simpson's $\frac{1}{3}$ rd rule taking $h=0.25$.

UNIT-IV

8. a) Find $y(0.1)$ by Taylor's series expansion when

$$
\frac{d y}{d x}=x-y^{2}, y(0)=1
$$

b) Apply Runge-Kutta method of $4^{\text {th }}$ order, to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y, \quad y(0)=1$.
9. a) Given that $\frac{d y}{d x}=2+\sqrt{x y}, y(1)=1$.

Find $y(2)$ in steps of 0.2 using the Euler's method.
$6 \mathrm{M} \mathrm{CO4}$
b) Obtain Picard's second approximate solution of the initial
value problem $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0$.
6 M CO
10. Solve the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ under the conditions

$$
\begin{aligned}
& y(0, t)=0, y(L, t)=0 \text { for all } t \\
& y(x, 0)=f(x) \text { and }\left(\frac{\partial y}{\partial t}\right)_{t=0}=g(x), 0<x<L .
\end{aligned}
$$

OR

11. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)=\left\{\begin{array}{lc}
x, & 0 \leq x \leq 50 \\
100-x, & 50 \leq x \leq 100
\end{array}\right.
$$

Find the temperature $u(x, t)$ at any time.

II B.Tech. I Semester Regular Examinations March 2022

Basic Electrical and Electronics Engineering

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) What is Fleming's right hand rule?
b) Draw and explain speed torque characteristics of a DC shunt motor?
c) Define Slip of an induction motor? What happens if slip becomes zero?
d) Explain the concept of negative resistance region?
e) Enumerator various types of cables?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO
UNIT-I
2. a) State and explain Fleming's Right hand rule and Lenz's law?
b) Find the values of $\mathrm{v}, \mathrm{i} 1$ and i 2 in the circuit shown which contains a voltage dependent current source. Resistances values are in ohms.

3. a) State Ohm's law and mention the limitations of ohm's law?
b) The air gap in a magnetic circuit is 1.5 mm long and $2500 \mathrm{~mm}^{2}$ in cross-sectional area. Calculate the (i) reluctance of the air gap (ii) m.m.f required to set up a flix of $800 \times 10^{-6} \mathrm{~Wb}$ in the air gap.

6M 1 L3
4. a) Derive an expression for EMF in DC Motor
b) A 6 pole has an armature with 90 slots and 8 conductor/slot and running at 1000 rpm , the flux per pole is 0.05 wb . Determine the induced EMF if the winding is Lap connected. 6M 2 L3

OR
5. a) Describe the working and principle of operation of a DC Generator? 6M 2 L2b) A 500 V shunt motor takes 4 A on no load. The armatureresistance including that of brushes is 0.2 and the fieldcurrent is 7 A . Estimate the output and efficiency when inputcurrent is (i) 20 A (ii) 100 A
UNIT-III
6. a) Determine the voltage regulation of an alternator using synchronous impedance method? 6M $3 \quad$ L3b) A 3-phase, 4-pole, 50 Hz induction motor has a startingtorque which is 20% of the max torque. If the rotor resistanceis 0.3 per phase, calculate (i) rotor leakage reactance(ii) slip at max torque (iii) speed at max torque.6M 3 L3
OR
7. a) State various losses occurring in a single phase transformer? On what factors do they depend? 6M $3 \quad$ L2
b) A $315 \mathrm{KVA}, 50 \mathrm{~Hz}$ single phase transformer has full loadcopper loss 1900 watts and iron loss of 1800 watts.Calculate the efficiency of a transformer at full load and at$0.8 p f$ lagging.
6M 3 L3
UNIT-IV
8. a) Explain in detail about full wave rectifier with capacitor filter with neat sketches 6M 4 L2
b) What is meant by transistor biasing? And explain the need of biasing in a transistor amplifier. Mention few method of biasing.
OR
9. a) Briefly explain the operation of NPN and PNP transistors. 6M 4 L2
b) Explain volt ampere characteristics of diode using diodecurrent equation.6M 4 L2
UNIT-V
10. a) Explain the measurement of current and frequency with the help of CRO. 6M 5 L2
b) What is the necessity of earthing or grounding? Explain different methods of earthing. 6M 5 L3
OR
11. a) Explain the procedure of energy consumption calculation. 6M 5 L2b) Write about various errors and compensations in measuringinstruments.$6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
Hall Ticket Number :
Code: 20A333T
II B.Tech. I Semester Supplmentary Examinations August 2022

Basic Thermodynamics

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions	$(5 \times 2=10 \mathrm{M})$	co	Blooms Level
a) Define state and property of a substance.	1	L 1	
b) Define PMM1 and PMM2.	2	L 1	
c) What do you mean by critical point and triple point during change of			
phase of a pure substance?	3	L 2	
d) Define compressibility factor. What is the use of compressibility chart?	4	L 2	
e) Draw p-v and T-s diagrams for dual cycle.	5	L 2	

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Prove that internal energy is a property of a system.
6M 1 L2
b) A turbine operating under steady flow conditions receives 5000 kg of steam / hour. The steam enters the turbine at a velocity of $3000 \mathrm{~m} / \mathrm{min}$, an elevation of 5 m and a specific enthalpy of $2787 \mathrm{~kJ} / \mathrm{kg}$. It leaves the turbine at a velocity of $6000 \mathrm{~m} / \mathrm{min}$, an elevation of 1 m and a specific enthalpy of $2259 \mathrm{~kJ} / \mathrm{kg}$. Heat losses from the turbine to the surroundings amount to $16,736 \mathrm{~kJ} / \mathrm{hour}$. Determine the power output of the turbine.

OR

3. a) Compare heat and work.
b) To a closed system 150 kJ of work is supplied. If the initial
volume is $0.6 \mathrm{~m}^{3}$ and the pressure of the system changes as
$\boldsymbol{p}=\boldsymbol{8}-\mathbf{4 v}$ where p is in bar and v is in m^{3}, determine the final
volume and pressure of the system.
b) To a closed system 150 kJ of work is supplied. If the initial
volume is $0.6 \mathrm{~m}^{3}$ and the pressure of the system changes as
$\boldsymbol{p}=\boldsymbol{8}-\mathbf{4 v}$ where p is in bar and v is in m^{3}, determine the final
volume and pressure of the system.
b) To a closed system 150 kJ of work is supplied. If the initial
volume is $0.6 \mathrm{~m}^{3}$ and the pressure of the system changes as
$\boldsymbol{p}=\boldsymbol{8}-\mathbf{4 v}$ where p is in bar and v is in m^{3}, determine the final
volume and pressure of the system.
b) To a closed system 150 kJ of work is supplied. If the initial
volume is $0.6 \mathrm{~m}^{3}$ and the pressure of the system changes as
$\boldsymbol{p}=\boldsymbol{8}-\mathbf{4} \boldsymbol{v}$ where p is in bar and v is in m^{3}, determine the final
volume and pressure of the system.
6M 1 L2

UNIT-II

4. a) State the Kelvin-Planck and Clausius statements of $2^{\text {nd }}$ law of thermodynamics and establish their equivalence.
6M 2 L2
b) In a reversible process the rate of heat transfer to the system per unit temperature rise is given by $\boldsymbol{\delta Q} / \mathbf{T}=0.5 \mathrm{~kJ} / \mathrm{K}$. Find the change in entropy of system if its temperature rises from 500 K to 800 K .
5. a) Define Gibb's and Helmholtz's functions. What are the differences between them?
b) A fish freezing plant requires 50 tons of refrigeration. The freezing temperature is $-40^{\circ} \mathrm{C}$ while the ambient temperature is $35^{\circ} \mathrm{C}$. If the performance of the plant is 15% of the theoretical reversed Carnot cycle working within the same temperature limits, calculate the power required.

UNIT-III

6. a) Explain the following terms relating to steam formation:

Sensible heat of water, Latent heat of steam, Dryness fraction of steam, Enthalpy of wet steam, Dry saturated steam and Super-heated steam.
b) Find the enthalpy and entropy of steam when the pressure is 2 MPa and the specific volume is $0.09 \mathrm{~m}^{3} / \mathrm{kg}$.

OR

7. a) Give a brief account about experimental method of calculating dryness fraction of steam using throttling calorimeter.
b) Determine the enthalpy, volume, internal energy and entropy of superheated steam at 15 bar and $220^{\circ} \mathrm{C}$. The volume of water may be neglected and take the specific heat of superheated steam equal to $2.2 \mathrm{~kJ} / \mathrm{kg}$.

UNIT-IV

8. a) Explain the throttling process and free expansion process.

6M
L2
b) A fluid undergoes a reversible adiabatic compression from $0.5 \mathrm{MPa}, 0.2 \mathrm{~m}^{3}$ to $0.05 \mathrm{~m}^{3}$ according to the law $\boldsymbol{p v}^{1.3}=$ constant. Determine the change in enthalpy, internal energy, entropy, heat transfer and work transfer during the process.

OR

9. a) State Van Der Walls equation of state of a gas and obtain expressions for the two constants of the equation.

6M $4 \quad$ L2
b) Find the increase in entropy when 2 kg of oxygen at $60^{\circ} \mathrm{C}$ are mixed with 6 kg of nitrogen at the same temperature. The initial pressure of each constituent is 103 kPa and is the same as that of the mixture.

UNIT-V

10. a) Draw p-v and T-s diagrams for Otto cycle and derive expressions for its air standard efficiency.
b) An engine equipped with a cylinder having a bore of 15 cm and stroke of 45 cm operates on an Otto cycle. If the clearance volume is $2000 \mathrm{~cm}^{3}$, compute the air standard efficiency

6M 5 L3
OR
11. a) Draw p-v and T-s diagrams for Diesel cycle and derive an expression for its M.E.P.
b) A Diesel engine has a compression ratio of 14 and cut-off takes place at 6% of the stroke. Find the air standard efficiency.

