Hall Ticket Number : \square

Code: 20A432T

R-20

II B.Tech. I Semester Supplementary Examinations July 2023
Digital Logic Design
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Determine the value of base x if $(211)_{x}=(152)_{8} \quad$ CO1 L1
b) Design 2×4 decoder using NAND gates CO2 L3
c) Write the differences between the Combinational and sequential circuits. CO3 L2
d) What are the classifications of sequential circuits? CO3 L1
e) Define state and state diagram. CO4 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

UNIT-I

2. a) Subtract the following decimal numbers by the 9's and 10's complement methods. i) 93-615
ii) 574.6-297.7
iii) 376.3-765.6
b) Reduce the following Boolean function to three literals and draw the logic diagram: $\left(x^{\prime} y^{\prime}+z\right)^{\prime}+z+x y+w z$.

OR

3. a) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8 bit data word that was written into memory if the 12 bit word read out is as 101110010100 ?
b) Write a brief note on Gray codes. Also discuss methods for conversion from gray to binary code and vice versa.

6M CO1

UNIT-II

4. a) Rewrite the following Boolean expression in the minterm and maxterm canonical and Standard forms. $f(x, y, z)=x^{\prime}\left(y^{\prime}+z\right)+z^{\prime}$

6M CO2
b) Using K-map find the minimized Boolean function and its complement for the following $f(A, B, C, D)=\sum m(1,2,3,4,6,8,9,10,11,12,14)$.

6 M CO 2

OR

5. a) Simplify the following Boolean function using tabular method:
$f(A, B, C, D)=\Sigma m(0,6,8,13,14)+\sum d(2,4,10)$ and identify essential prime implicants.
b) A truth table has four inputs variables. The first eight outputs are 0's and the last eight output are 1's. Draw the k-Map and write down the simplified expression

UNIT-III

6. a) Realize the following Boolean function with multiplexer $f(A, B, C, D)=m(0,1,3,4,8,9,15)$.
i) Using 8:1 MUX with A, B, C select lines
ii) Using 4:1 MUX with A, B select lines

6 M CO
b) Design a digital system to add two Binary Coded Decimal numbers using binary adder.

OR
7. a) Implement $4^{*} 16$ decoder using two $3^{*} 8$ decoders.

6 M CO
b) Give circuit implementation of 4 Bit Ripple Adder/Subtractor using twos complement method.

6 M CO 3

UNIT-IV

8. a) With the help of logic diagram, explain working of Master slave JK Flip-Flop along with waveforms. Explain race around condition. How is it eliminated?
b) Convert JK Flip-Flop to SR Flip-Flop.

6M CO3
6 M CO

OR

9. a) Design a D type positive edge triggered flip-flop. Explain the operation of the sequential circuit when $C P=1$.

6 M CO 3
b) Design a 4-bit Johnson counter and explain.

6 M CO
UNIT-V
10. Construct a sequential logic circuit with single input and single output by obtaining the state and excitation table for the given state diagram using JK FF.

OR

11. Construct Moore and Mealy state diagram that will detect input sequence 10110, when input pattern is detected, z is asserted high. Give state diagram for each state.
\square
Code: 20AC36T

R-20

II B.Tech. I Semester Supplementary Examinations July 2023

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) State the law of demand. CO1 L2
b) Write a short note on Isoquants. CO2 L1
c) What is joint Hindu family business? $\quad \mathrm{CO}$ L1
d) List the methods of capital budgeting. CO4 L3
e) Differentiate tangible assets from intangible assets.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Explain the reasons why demand curve always slopes downwards.

12M CO1

OR

3. What are the various forecasting techniques? Explain each of them in detail.

UNIT-II

4. Explain the behavior of Total Cost (TC), Total Variable Cost (TVC) and Total Fixed Cost using suitable cost-output diagram.

12M CO2 L4

OR

5. From the following information calculate the breakeven point and the turnover required to earn a profit of Rs.36,000.Given that
Fixed overheads-Rs.1,80,000
Variable cost per unit-Rs.2/ and Selling price-Rs.20/.
If the company is earning a profit of Rs.36, 000, find the margin of safety available to it.

12M CO2

UNIT-III

6. Explain the price output decision under monopolistic competition in the long run with the help of diagram.
7. Summarize the differences between private company and public company.

UNIT-IV

8. Discuss the different sources of raising capital, for an organization.

OR

9. Compute the NPV for the projects X and Y and choose the best. The firm's cost of capital is 10\%.

Year	Project X	Project Y
0	70,000	70,000
1	10,000	50,000
2	20,000	40,000
3	30,000	20,000
4	45,000	10,000
5	60,000	10,000

UNIT-V

10. a) Discuss the importance of financial statement analysis in business.

6M co5 L3
b) Summarize the managerial applications of ratio analysis.

6 M CO5 L3

OR

11. Journalize the following entries in the Books of M / s. Rock Well Industries Ltd.

No	Date	Description	Rs. Lakhs
1	$01-05-2020$	Started Business with cash	5.00
2	$02-05-2020$	Deposited in Andhra Bank	3.00
3	$05-05-2020$	Purchased Goods on Credit from ABC Ltd	15.00
4	$08-05-2020$	Sold goods on Credit to XYZ Ltd	5.00
5	$10-05-2020$	Paid Freight Charges by Cheque	0.25
6	$25-05-2020$	Paid Salaries from Bank	2.00
7	$30-05-2020$	Drawn Cash from Bank	5.00
8	$31-05-2020$	Purchased Furniture on Credit from GBL	1.20

12 M CO5 L3
\square
Code: 20A431T
II B.Tech. I Semester Supplementary Examinations July 2023

Signals \& Systems

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL

b) Determine the Fourier transform of Signum function. C02 L2
c) Determine the Nyquist sampling rate and Nyquist sampling interval for the signal: $\quad x(t)=\operatorname{sinc}(100 \pi t)+5 \operatorname{sinc}^{2}(200 \pi t)$
d) Compare ESD and PSD. CO4 L2
e) State the properties of ROCs of $X(z)$.

CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Deterr ine wheth r the foll(\mathbf{N}^{17} ng syst
b) Obtain the exponential Fourier series $2 y(t) \equiv$ function $\mathrm{x}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t})$ over the interval $0 \leq t \leq \pi$.
$6 \mathrm{M} \mathrm{CO1} \mathrm{L2}$

OR

3. a) Derive the expressions for the trigonometric Fourier series coefficients.

6M CO1 L2
b) Find the trigonometric Fourier series of $x(t)=t^{2}$ over the interval ($-1,1$).
$6 \mathrm{M} \mathrm{CO1} \mathrm{L3}$

UNIT-II

4. a) Compute the Fourier transform of the following signals i) $e^{-a t} u(t)$ ii) Triangular pulse

6M CO2 L4
b) For a signal $\mathrm{x}(\mathrm{t})$, the FT is $\mathrm{X}(\mathrm{f})$. Determine the Inverse FT of $X(3 f+2)$.
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$
5. a) State and prove the following properties of Fourier series.
(i). time shifting
(ii). convolution
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$
b) What is Hilbert transform? How does it differ from other transforms?
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 1$

UNIT-III

6. a) State and prove the properties of LTI Systems
b) Obtain the conditions for the Distortionless transmission through a system.

6 M CO3 L2

6 M CO3 L2

OR

7. a) State and prove sampling theorem for low pass signals.
b) The spectral range of a signal extends from 5.6 MHz to 6.8 MHz . Find the minimum sampling rate and maximum sampling time.
8. a) For a syster
 the system.
b) Show that the convolution of two odd functions is an even function.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

OR

9. a) Show that auto correlation function and ESD form a Fourier transform pair.
b) Find the autocorrelation and ESD of signal $x(t)=e^{-t} u(t)$ using the relation between convolution and correlation.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

UNIT-V

10. a) State and prove any two properties of Laplace transforms.
$6 \mathrm{M} \mathrm{CO5}$ L2
b) If $X(s)=\frac{:}{s^{2}+8 s+2}$, find $x(t), t \geq 0$.

OR

11. a) Prove that the sequence $x(n)=a^{n} u(n)$ and $x(n)=-a^{n} u(-n-1)$ have the same $X(z)$ and differ only in ROC.
$6 \mathrm{M} \operatorname{co5} \mathrm{L} 3$
b) Find the Inverse Z-transform of the sequence
$X(Z)=\overline{2 z} \frac{z}{-3 z+1}$, 亿OC: $|z|>1$
6 M CO5 L2
\square
Code: 20AC32T
II B.Tech. I Semester Supplementary Examinations July 2023

Transform Techniques \& Complex Variables

(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$

UNIT-I

2. a) Find $L\left(j 0^{t} \frac{t-\sin ^{2 t}}{t} d t\right)$
b) Apply Laplace transform and evaluate $\int_{0}^{\circ-\frac{s i n}{s t}} d t$

6M $1 \quad 2$ 6M 1

OR

3. a) Find Laplace transform of

$\infty \in$
6M $1 \quad 2$
 $\frac{\cos }{\sqrt{t}}$
6M 13

UNIT-II

4. a) Find inverse Laplace transform of $\frac{1}{\sqrt{2 s-3}}$
b) Apply convolution and find $\xlongequal{\frac{N}{2 m} \mathrm{c}^{1} \sqrt{\sqrt{2}} \frac{1}{5-\sqrt{3}}}$
$\operatorname{sim}^{-1}\left[-\overline{\left.s^{2}+a z^{2}\right)(s \overline{2}+b \overline{2})}\right]$.
6M 2
OR
5. a) Find ${ }_{L^{-1}\left[\frac{2}{2} \frac{S-5}{-\frac{s}{2}}{ }^{2}\right]}$

6M 23

UNIT-III

6M $3 \quad 3$
b) Using Fourier sine integral show that

$$
\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)} d \lambda=\frac{\pi}{2\left(b^{2}-a^{2}\right)}\left(e^{-a x}-e^{-b x}\right)
$$

$a, b>0$
6M $3 \quad 3$

OR

7. a) $\underset{\text { Find the }}{a, b>0} F_{\text {ourier Sine transforn }}{ }^{\text {i }}$ and Fourier Cosine transform of $f_{\text {Find }}(x) 2_{r}^{e-5 x}+5^{e-2 x}$.

6M $3 \quad 3$
b) Find the half $+5 e^{-}$cosine series $\rho f(x)=\left(x^{\text {etrel }}\right)^{2}$ or in

UNIT-IV

 origin although Cauchy-fímanin equations are satisfied at that point.

6M 43

 in the parametric form.

6M $4 \quad 3$

OR

9. a) Find the analytic function $f(z)=u+i v$ if $u-v=e^{x}(\cos y-\sin y)$
 integral formula

6M 43

UNIT-V

 region $\left.\right|^{z \mid<1}$

6M
53
b) Apply Cauchy's resid ${ }_{\text {ue th }}$ eol $L_{\text {em, }}$, evaluate $\oint_{c} \bar{z}^{\frac{2}{2}+2 z+5} d z$
where c is the circle $\left.\right|^{z+1}+i=1=2$.

6M 43

OR

$6 \mathrm{M} \quad 5$
3
11. a) Expand ${ }_{f}^{\operatorname{tr}}\left({ }^{\mathbf{z}}\right)=\frac{-\left(\frac{z}{z}\right.}{\mathbf{z}^{-}\left(\frac{z}{z^{2}}-\mathbf{z}-2\right)}$ in power series of z where
 6M $5 \quad 3$
b) Find thie residues of $f(z)=\frac{\left.\sin \pi z^{2}+\frac{\operatorname{coss} z^{2}}{(z-1}\right)^{2}}{(z-2)}$ and evaluate $j_{\boldsymbol{c}} \boldsymbol{f}_{\left(z_{i}\right)} \boldsymbol{d z}$ where c is $|z|=3$.
\square

Code: 20A433T

II B.Tech. I Semester Supplementary Examinations July 2023

Analog Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions
$(5 \mathrm{X} 2=10 \mathrm{M})$
a) State Miller's theorem.
b) List the advantages of negative feedback.
c) What are the primary requirements to obtain steady oscillation at a fixed frequency?
d) What is the maximum efficiency of class B amplifier?
e) Draw a Transistor clipper circuit.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Illustrate the h-parameter model of a BJT-CE amplifier and derive the equations for voltage gain, current gain, input impedance and output impedance.
b) The hybrid parameters of a transistor used as an amplifier in the CE configuration are $h_{i e}=800, h_{f e}=46, h_{0 e}=80 \times 10-6$ and $h_{r e}=5.4 \times 10^{-4}$. If $R_{L}=5 k \quad$ and $R_{s}=500$. Find $A_{i}, R_{i}, A_{v}, R_{0}$.

OR

3. a) i. Given $\beta=120, r_{e}=4.5$, and $r_{0}=40 \mathrm{k}$, sketch the approximate hybrid equivalent circuit.
ii. Given $h_{i e}=1 \mathrm{k}, \mathrm{h}_{\mathrm{re}}=2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=90$, and hoe $20=\mu \mathrm{S}$, sketch the re model.
b) Explain dual of miller's theorem

UNIT-II

4. a) If an amplifier with gain of -1000 and feedback of $\beta=-0.1$ has a gain change of 20% due to temperature, calculate the change in gain of the feedback amplifier.
b) List the general characteristics of negative feedback amplifiers.
5. a) Discuss in detail about voltage-series feedback and voltageshunt feedback amplifier.
b) Calculate the gain, input, and output impedances of a voltageseries feedback amplifier having $A=-300, R_{i}=1.5 \mathrm{k},, R_{0}=50 \mathrm{k}$, and $\beta=-1 / 15$.

UNIT-III

6. a) Design a passive $R C$ phase shift network to achieve a phase shift of 60°.

6M $3 \quad 5$
b) An amplifier bursts into oscillation when the loop gain $A \beta=1$, but for sustained oscillation $A \beta>1$. Why so?

6M 3

OR

7. a) Explain the principle of operation of crystal oscillator. Draw the frequency response of crystal oscillator.
b) A 1 mH inductor is available. Choose the capacitor values in a Colpitts oscillator so that $f=1 \mathrm{MHz}$ and $\beta=0.25$.

6M $3 \quad 4$
6M 3

UNIT-IV

8. a) For a class B amplifier providing a 20 V peak signal to a 16 load (speaker) and a power supply of $\mathrm{V}_{C C} 30 \mathrm{~V}$, determine the input power, output power, and circuit efficiency.
b) With suitable circuit diagram explain a class A amplifier. OR
9. a) With suitable circuit diagram explain a push-pull amplifier.

6M $4 \quad 1$
b) Explain power dissipation in transistor amplifier. Suggest the methods to address this issue.

6M 45

UNIT-V

10. a) Find out the impulse response of a single stage low pass filter.

6M $5 \quad 4$
b) Compute the time domain output of this circuit of a power of 1volt is given as its input.

6 M 55

OR

11. a) Determine the output for the following circuits

b) State and prove clamping circuit theorem.
