	Ha	II Ticket Number :]				1	
(Code	e: 20A432T				[J]		R-20			
		II B.Tech. I S	Seme	este	r Su	ppl	eme	enta	ry E>	kam	inati	ions	s July	· 202	3			
					-		Log			-								
	May	(Ele . Marks: 70	ectro	nics	and	d Co	mm	unic	atio	n En	gine	erin	g)	Tir	ne: 3 Hc			
	MUX	. Marks. 70				2	****	****						111	пе. з пс	015		
l	Note	: 1. Question Paper	cons	sists	of tv	vo p	arts (Part	-A ar	nd Pa	art-B))						
		2. In Part-A, each o	•															
		3. Answer ALL the	ques	tion	s in I	Part-	•A an PAR		rt-B									
					(Co	ompi	ulsor		stion)								
1.	Ansv	wer all the following	shor	t ans	•	-				-	10M)			C	C	BL	
a)		ermine the value of				•			、 -			,			CC		L1	
b)	Des	ign 2x4 decoder usi	ing N/	AND	gate	es									CC)2	L3	
c)	Writ	e the differences be	etwee	n the	e Co	mbin	ation	al ar	id se	quen	ntial c	ircui	ts.		CC)3	L2	
d)	Wha	at are the classificat	ions c	of se	quer	ntial	circui	ts?							CC)3	L1	
e)	Defi	ne state and state c	diagra	m.											CC)4	L1	
							PAR											
	Ans	swer <i>five</i> question	s by	cho	osin	g on	e qu	estic	on fro	om e	ach ı	unit	(5 x	12 = (-	~	
				ſ		UN	T_1								Marks	C	0	BL
2.	a)	Subtract the follow	vina d	decir	nal i			bv th	ne 9's	s and	d 10':	s co	mpler	ment				
	,	methods. i) 93 - 61	15 i	i) 57	′4.6 ·	297	7.7	iii) 37	6.3 -	- 765	.6		•		6M	СС	D1	L2
	b)	Reduce the follow	•		an fi	uncti	on to	thre	e lite	erals	and	draw	v the	logic	GM	~	ר1	10
		diagram: (x'y'+z)'+	∠+хуч	FWZ.		6	DR								6M	CC	וכ	L2
3.	a)	A 12 bit Hamming	ı code	e wo	rd co			8 bit	sof	data	and a	4 pa	ritv b	its is				
0.	α)	read from memory					-					-	•					
		into memory if the	12 bi	t wo	rd re	ad o	ut is	as 1()111(0010	100?				6M	СС	D1	L3
	b)	Write a brief note o		-			o dis	cuss	meth	nods	for co	onve	rsion	from	C M	~	~4	
		gray to binary code	e and	VICE	e ver	sa. UNI	т_11								6M		וכ	L2
4.	a)	Rewrite the follow	ving E	Bool	ean			on in	the	mint	term	and	max	term				
		canonical and Star	ndard	forr	ns.	f(x,y	',z) =	= x'(y'	+z)+:	z'					6M	СС	D2	L2
	b)	Using K-map find										ompl	lemer	nt for		~		
		the following f(A,	,B,C,[= (כ	m(8,9,1	0,11	,12,1	4).				6M	CC)2	L3
5.		Simplify the followi	ina Pr	مام	on fu	-	DR	ina tr	shula	r mo	thad							
5.	a)	f(A, B, C, D) = m(0)	-					-					ntial p	orime				
		implicants.	, , , , ,	,	·, · · ,		~ (_,	.,,							6M	СС	D2	L3
	b)	A truth table has fo	•						•	•								
		last eight output a	are 1'	's. D)raw	the	k-Ma	ap ar	nd wi	rite c	down	the	simp	lified	<u>en</u>	~	יר	10
		expression													6M		52	L3

		Code	e: 20A4	32T	
		UNIT-III			
6.	a)	Realize the following Boolean function with multiplexer			
		f(A,B,C,D) = m(0,1,3,4,8,9,15).			
		i) Using 8:1 MUX with A,B,C select lines			
		ii) Using 4:1 MUX with A,B select lines	6M	CO3	L3
	b)	Design a digital system to add two Binary Coded Decimal numbers using			
		binary adder.	6M	CO3	L3
		OR		CO3	
7.	a)	Implement 4*16 decoder using two 3*8 decoders.	6M	CO3	L3
	b)	Give circuit implementation of 4 Bit Ripple Adder/Subtractor using twos			
		complement method.	6M	CO3	L2
		UNIT–IV			
8.	a)	With the help of logic diagram, explain working of Master slave JK Flip-Flop			
		along with waveforms. Explain race around condition. How is it eliminated?	6M	CO3	L2
	b)	Convert JK Flip-Flop to SR Flip-Flop.	6M	CO3	L2
		OR			
9.	a)	Design a D type positive edge triggered flip-flop. Explain the operation of			
		the sequential circuit when $CP = 1$.	6M	CO3	L3
	b)	Design a 4-bit Johnson counter and explain.	6M	CO3	L3
		UNIT–V			
10.	Cor	struct a sequential logic circuit with single input and single output by			
	obta	aining the state and excitation table for the given state diagram using JK FF.			
		^			

12M CO4 L3

 Construct Moore and Mealy state diagram that will detect input sequence 10110, when input pattern is detected, z is asserted high. Give state diagram for each state.
 12M CO4 L3

	Hall Ticket Number :			
	ode: 20AC36T	R-20)	
	II B.Tech. I Semester Supplementary Examinations July 2	023		
	Managerial Economics and Financial Analysis			
	(Common to CE & ECE)	Tipe of 2		
\sim	lax. Marks: 70 ********	Time: 3	HOUIS	
No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
1.	Answer all the following short answer questions $(5 \times 2 = 10)$	M)	CO	BL
a)	State the law of demand.		CO1	L2
b)	Write a short note on Isoquants.		CO2	L1
c)	What is joint Hindu family business?		CO3	L1
d)	List the methods of capital budgeting.		CO4	L3
e)	Differentiate tangible assets from intangible assets.		CO5	L1
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12	- 60 Mai	·ke)	
		Marks	cO	BL
	UNIT–I			
2.	Explain the reasons why demand curve always slopes			
	downwards.	12M	CO1	L2
_	OR			
3.	What are the various forecasting techniques? Explain each	4014		
	of them in detail.	12M	CO1	L2
4.	UNIT-II Evoluin the behavior of Total Cast (TC), Total Variable Cast			
4.	Explain the behavior of Total Cost (TC), Total Variable Cost (TVC) and Total Fixed Cost using suitable cost-output			
	diagram.	12M	CO2	L4
	OR		002	
5.	From the following information calculate the breakeven			
	point and the turnover required to earn a profit of			
	Rs.36,000.Given that			
	Fixed overheads-Rs.1,80,000			
	Variable cost per unit-Rs.2/ and Selling price-Rs.20/.			
	If the company is earning a profit of Rs.36, 000, find the			
	margin of safety available to it.	12M	CO2	L1
-	UNIT-III			
6.	Explain the price output decision under monopolistic		-	
	competition in the long run with the help of diagram.	12M	CO3	L1
		Doo	o 1 of 7	

OR

 Summarize the differences between private company and public company.
 12M CO3 L1

UNIT–IV

8. Discuss the different sources of raising capital, for an organization.

12M CO4 L1

OR

9. Compute the NPV for the projects X and Y and choose the best. The firm's cost of capital is 10%.

	-	
Year	Project X	Project Y
0	70,000	70,000
1	10,000	50,000
2	20,000	40,000
3	30,000	20,000
4	45,000	10,000
5	60,000	10,000

12M CO4 L4

6M CO5 L3

UNIT–V

- 10. a) Discuss the importance of financial statement analysis in business.
 - b) Summarize the managerial applications of ratio analysis. 6M CO5 L3

OR

11. Journalize the following entries in the Books of M/s. Rock Well Industries Ltd.

No	Date	Description	Rs. Lakhs
1	01-05-2020	Started Business with cash	5.00
2	02-05-2020	Deposited in Andhra Bank	3.00
3	05-05-2020	Purchased Goods on Credit from ABC Ltd	15.00
4	08-05-2020	Sold goods on Credit to XYZ Ltd	5.00
5	10-05-2020	Paid Freight Charges by Cheque	0.25
6	25-05-2020	Paid Salaries from Bank	2.00
7	30-05-2020	Drawn Cash from Bank	5.00
8	31-05-2020	Purchased Furniture on Credit from GBL	1.20

*** End ***.

12M CO5 L3

Hall Ticket Number :					
Code: 20A431T			R-20		
	ester Supplementary Ex	aminations July	2023		
	Signals & System				
•	nics and Communication	ו Engineering)			
Max. Marks: 70	******		Time: 3 H	ours	
Note: 1. Question Paper const	ists of two parts (Part-A an	nd Part-B)			
-	tion carries Two marks .	D			
3. Answer ALL the que	estions in Part-A and Part- PART-A	·B			
	(Compulsory question	L)			
1. Answer all the following s			1)	со	BL
a) Sketch the following sign	(Compulsory question t answer questions	·) _ 5 × 2 =) + ~	, , ,	CO1	L1
b) Determine the Fourier tra			(t - 4)	C02	
c) Determine the Nyquist sa	Ū		al for the	002	L
	$10 t) + 5 sinc^2(200 t)$			CO3	L2
d) Compare ESD and PSD.					 L2
e) State the properties of R	Ccs of X(z)			CO5	L2
	PART-B			000	LZ
Answer <i>five</i> questions by		om each unit (5 x 1	2 = 60 Mark	s)	
			Marks	СО	BL
	UNIT–I				
2. a) Deterrine whether	the follen Ing syste	ر عد عد	-		
linear $\frac{d^3y(t)}{dt^2} + 5\frac{d^2y}{dt^2}$	$\frac{d}{dt} + 6 \frac{\partial^{vi} v_{y(t)}}{dt} + 2 \frac{\partial^{vi} v_{y(t)}}{dt}$	is Line ^a or nor $-) = x^2(t)$	014		
b) Obtain the exponen		$j = \chi$ (c)	6M	CO1	L2
x(t) = A sin(t) ove	r the interval $0 \le t \le 1$	π.	6M	CO1	L2
	OR				
3. a) Derive the expression	ons for the trigonome	tric Fourier serie	es		
coefficients.			6M	CO1	L2
b) Find the trigonome	tric Fourier series of	$x(t) = t^2$ over th	ne		
interval (-1,1).			6M	CO1	L3
	UNIT–II				
4. a) Compute the Fourie	er transform of the folle	owing signals			
i) e ^{-at} u(t) ii) Triang	ular pulse		6M	CO2	L4
b) For a signal x(t), the	e FT is X(f). Determir	ne the Inverse F	T		
of X(3f+2).			6M	CO2	L2
	OR				

		Cod	e: 20A 4	31T	
5.	a)	State and prove the following properties of Fourier series.			
		(i). time shifting (ii). convolution	6M	CO2	L2
	b)	What is Hilbert transform? How does it differ from other transforms?	614	000	
			OIVI	CO2	L1
6	a)	State and prove the properties of LTI Systems	6M	CO3	10
0.	b)		OW	005	LZ
	2)	through a system.	6M	CO3	L2
		OR			
7.	a)	State and prove sampling theorem for low pass signals.	8M	CO3	L2
	b)	The spectral range of a signal extends from 5.6 MHz to 6.8			
		MHz. Find the minimum sampling rate and maximum			
		sampling time.	4M	CO3	L2
Q	2)				
0.	aj	For a system $[v]_{t} = e^{-3t}u^{(1)}$ in the impulse response is $h(t) = e^{-3t}u^{(1)} + e^{-3t}u^{(2)}$. The output for			
		the system. $u(t) = e$ $u(t) + e$ $u(-t)$. Finally compared to the system.	6M	CO4	L2
	b)	Show that the convolution of two odd functions is an even			
		function.	6M	CO4	L2
		OR			
9.	a)	Show that auto correlation function and ESD form a			
	L-)	Fourier transform pair.	6M	CO4	L2
	D)	Find the autocorrelation and ESD of signal $x(t) = e^{-t}u(t)$ using the relation between convolution and correlation.	6M	CO4	10
		UNIT-V	OW	004	LZ
10.	a)	State and prove any two properties of Laplace			
	,	transforms.	6M	CO5	L2
	b)	If X(s) = $\frac{s+2}{s^2+8s+25}$, find x(t), t 0.	6M	CO5	10
		OR	OW	005	LZ
11.	a)	Prove that the sequence $x(n)=a^n u(n)$ and $x(n)=-a^n u(-n-1)$			
	,	have the same X(z) and differ only in ROC.	6M	CO5	L3
	b)	Find the Inverse Z-transform of the sequence			
		$X(Z) = \frac{z}{2z_2 - 3z + 1}$, ROC: $ z > 1$	6M	CO5	L2
		*** End ***			
			Page 2	2 of 2	

Hall Ticket Number :			
Code: 20AC32T	R-20		
II B.Tech. I Semester Supplementary Examinations July 2 Transform Techniques & Complex Variables	023		
(Common to EEE and ECE) Max. Marks: 70	Time: 3 Ho	ours	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
PART-A			
(Compulsory question)		~~	
1. Answer <i>all</i> the following short answer questions $(5 \times 2 = 10 \text{ M})$		CO	BL
a) Answer all the step function and write Laplace transform of unit step $u(t-a)$		2	2
b) State convolution theorem.		2	1
c) Define half- range sine series, half-range cosine series.		2	1
d) Find real and imaginary parts of $\mathcal{I}_{\mathcal{A}}^{r}$.		2	2
e) Find the poles and order of poles of $f(z) = \frac{z}{2z^2+1}$		2	2
PART-B			
Answer <i>five</i> questions by choosing one question from each unit $(5 \times 12 = 0)$,		
UNIT–I	Marks	CO	BL
2. a) Find $L(J_0 \stackrel{t}{\underline{e^t sin^{ut}}} dt)$	6M	1	2
b) Apply Laplace transform and evaluate $\int_{0}^{c} \frac{\sin 2t}{dt} dt$	6M	1	3
OR			-
3. a) Find Laplace transform of $\frac{1}{2}$ $$	6M	1	2
3. a) Find Laplace transform of $\frac{\partial \mathbf{R}}{\partial \mathbf{R}}$ b) $\frac{\partial \mathbf{R}}{\partial \mathbf{L}}$ b) $\frac{\partial \mathbf{R}}{\partial \mathbf{L}}$ be transform of $\frac{\partial \mathbf{R}}{\partial \mathbf{R}}$ be	of		
v	6M	1	3
UNIT-II			
4. a) Find inverse Laplace transform of $\frac{1}{\sqrt{2s-3}}$	6M	2	2
b) Apply convolution and find $\sum_{L=1}^{n} \frac{1}{\sqrt{2s-3}} \frac{1}{\sqrt{2s-3}}$	6M	2	3
5. a) Find $\int_{L^{-1}\left[\frac{2^{s}-5}{s^{2}-4}\right]}^{L^{-1}\left[\frac{2^{s}-5}{s^{2}-4}\right]}$			
	6M	2	2
b) Solve $\int_{x''+2x'+x}^{-1} \int_{te-t \ given \ x(0)} = 4.x'(0) = 0$	6M	2	3

Code: 20AC32T

UNIT-III
6. a) Find Fourier series of the function
$$\sum_{x \to 2} = \sum_{x \to \infty} (z_x)^2 2xx$$
. 6M 3 3
b) Using Fourier sine integral show that

$$\int_{0}^{\infty} \frac{1}{(j^2 + a^2)(j^2 + b^2)} dj = \frac{f}{2(b^2 - a^2)}(e^{-ax} - e^{-bx}),$$
a,b>0 6M 3 3
OR
7. a) $\frac{1}{p + a^2} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dj$ and Fourier Cosine transform of
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r = a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_{x \to 2} \frac{1}{2(b^2 + b^2)} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_{x \to a^2}^{\infty} \sum_{x \to a^2}^{\infty} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_{x \to a^2}^{\infty} \sum_{x \to a^2}^{\infty} dk$ and
 $\int_{r \to a^2}^{\infty} \sum_$

На	all Ticket Number :		7	
Co	de: 20A433T	-20		
	II B.Tech. I Semester Supplementary Examinations July 2023			
	Analog Circuits			
	(Electronics and Communication Engineering) ax. Marks: 70	: 3 Hours		
1410	*******	. 5 110013	>	
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
1. Ans	wer all the following short answer questions $(5 \times 2 = 10M)$	CC) BL	-
a) Stat	e Miller's theorem.	1	1	
b) List	the advantages of negative feedback.	2	1	
c) Wha	at are the primary requirements to obtain steady oscillation at a fi	xed 3	5	
freq	uency?	0	0	
d) Wha	at is the maximum efficiency of class B amplifier?	4	4	
e) Drav	w a Transistor clipper circuit.	5	2	
^	PART-B nswer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60	Marke)		
A	inswer <i>the</i> questions by choosing one question from each unit ($5 \times 12 = 60$	Marks	со	BL
	UNIT–I			
2. a)	Illustrate the h-parameter model of a BJT-CE amplifier and derive			
	the equations for voltage gain, current gain, input impedance and			
	output impedance.	6M	1	2
b)	The hybrid parameters of a transistor used as an amplifier in the			
	CE configuration are $h_{ie} = 800$, $h_{fe}=46$, $h_{oe}=80 \times 10-6$ and $h_{re}=5.4 \times 10^{-4}$. If $R_L=5k$ and $R_s=500$. Find A_i , R_i , A_v , R_o .	6M	1	4
	OR	OW	1	7
3. a)	i. Given =120, r_e =4.5 , and r_o =40k , sketch the approximate			
0. u)	hybrid equivalent circuit.			
	ii. Given $h_{ie}=1k$, $h_{re}=2\times10^{-4}$, $h_{fe}=90$, and hoe 20=µS, sketch the			
	re model.	8M	1	5
b)	Explain dual of miller's theorem	4M	1	1
	UNIT–II			
4. a)	If an amplifier with gain of -1000 and feedback of =-0.1 has a			
	gain change of 20% due to temperature, calculate the change in	014	_	-
	gain of the feedback amplifier.	6M	2	3
b)	List the general characteristics of negative feedback amplifiers.	6M	2	1
	OR			

		Code: 2	0A433T		
5.	a)	Discuss in detail about voltage-series feedback and voltage- shunt feedback amplifier.	6M	2	2
	b)	Calculate the gain, input, and output impedances of a voltage- series feedback amplifier having A=-300, $R_i = 1.5 \text{ k}$, $R_o = 50 \text{ k}$, and $=-1/15$.	6M	2	3
6.	a)	Design a passive RC phase shift network to achieve a phase shift of 60°.	6M	3	5
	b)	An amplifier bursts into oscillation when the loop gain A =1, but for sustained oscillation A >1. Why so?	6M	3	3
		OR			
7.	,	Explain the principle of operation of crystal oscillator. Draw the frequency response of crystal oscillator.	6M	3	4
	b)	A 1 mH inductor is available. Choose the capacitor values in a Colpitts oscillator so that $f = 1$ MHz and $= 0.25$.	6M	3	3
8.	a)	For a class B amplifier providing a 20 V peak signal to a 16 load (speaker) and a power supply of V_{CC} 30 V, determine the input			
		power, output power, and circuit efficiency.	6M	4	5
	b)	With suitable circuit diagram explain a class A amplifier.	6M	4	2
		OR			
9.	a)	With suitable circuit diagram explain a push-pull amplifier.	6M	4	1
	b)	Explain power dissipation in transistor amplifier. Suggest the			
		methods to address this issue.	6M	4	5
	、	UNIT-V			
10.		Find out the impulse response of a single stage low pass filter.	6M	5	4
	b)	Compute the time domain output of this circuit of a power of 1volt is given as its input.			
		$\mathbf{r}_{\mathbf{v}_{1}} = \mathbf{v}_{\mathbf{v}_{2}}$	6M	5	5
11	ə)	OR Determine the output for the following circuits			
11.	aj				

6M 5 3 6M 5

4

b) State and prove clamping circuit theorem. *** End ***