		R-2	20	
Code: 20	DAC36T II B.Tech. I Semester Supplmentary Examinations August :			
	Managerial Economics and Financial Analysis			
Max. Ma	(Common to CE & ECE) arks: 70	Time: 3	3 Hours	5
2.]	Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark . Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. A	nswer all the following short answer questions (5 X 2 = 10N	Л)	СО	Bloon Leve
a)	Law of diminishing marginal utility		CO1	L1
b)	Iso-quants and iso-costs		CO2	L1
c)	Characteristics of monopolistic competition.		CO2	L2
d)	Scope of capital budgeting		CO2	L2
e)	Double entry bookkeeping		CO1	L1
	PART-B			
Ans	wer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	50 Mark Marks	ks) CO	Bloon
	UNIT–I	IVIAI KS	00	Leve
a) Dis	scuss the nature and scope of managerial economics.	6M	CO2	L
	ucidate the relationship of managerial economics with	0111	002	-
,	ner areas.	6M	CO3	L
	OR			
a) De	fine demand. Explain different types of demand.	6M	CO1	L
•	plain the law of demand and its exceptions.	6M	CO2	L
-	UNIT-II			
a) Ex	plain the determinants of cost.	6M	CO2	L
b) Ide	entify different bases of cost classification.	6m	CO1	L
	OR			
_	plain graphically the cost-output relationship in the ng-run.	12M	CO3	L
	UNIT-III			
a) Sta	ate the characteristics of an oligopoly market.	6M	CO2	L
b) Dif	ferentiate joint stock company and cooperative society			
for	m business.	6M	CO3	L

Code: 20AC36T

7.		State the forms and functions of different types sector organizations.	-	2M	CO2	L2
		UNIT-IV			002	LZ
8.	a)	Discuss the sources of raising capital.	6	6M	CO2	L3
	b)	Explain what is profitability index. Discuss wh superior ranking criterion, profitability index or present value.	the net	6M	CO3	L3
		OR				
9.		An investment would cost `100,000 and provide	e annual			
		cash inflow of `21,150 for 6 years. If the opportu of capital is 10 per cent, calculate the Net Prese (NPV) and Internal Rate of Return (IRR)	ent Value			
		investment.	12	2M	CO3	L3
		UNIT–V				
10.	a)	State the accounting principles and ac conventions.	•	6M	CO1	L3
	h)	"Every debit must have a corresponding credit".			CO3	L3
	0)	OR			003	LJ
11.	a)	process.	6	6M	CO2	L3
	b)	For Pavani Ltd., calculate debtor's turnover ratio the flowing information:	from			
		Sundry debtors at beginning `20,00,000				
		Sundry debtors at end `12,50,000				
		Sales `25,50,250 *** End ***	6	6M	CO3	L4

Hall Ticket Number :			1
Code: 20A431T	R-2	0	
II B.Tech. I Semester Supplmentary Examinations August 20 Signals and Systems (Electronics and Communication Engineering)	022		
Max. Marks: 70 T	ime: 3	Hours	5
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark . 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO	Bloc Lev	
Define periodic signal. Give the condition for periodicity of a discre-	te	20	
time periodic signal.	CC)1	L1
Obtain Fourier transform of signum function.	CC	2	L2
Define System and signal bandwidth.	CC	3	L2
State Parseval's theorem.	CC	94	L3
What is the condition to be satisfied for the existence of Laplac transform?	cc CC	95	L4
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60) Marks	;)	
$\frac{1}{10} = 00$	Marks	co	Bloo Lev
a) Define Energy and			LUV
 a) Define Energy and power of a signal. Determine whether the following signal is Energy or Power signal and calculate energy or power. x(t) = e-2tu(t) b) Enumerate any two basic operations that can be applied 		CO1	
on signals with suitable examples. OR	6M	CO1	
a) Determine the trigonometric form of Fourier series of the			
 a) Determine the trigonometric form of Fourier series of the square wave form shown x(t) 			
square wave form shown			
square wave form shown x(t) $-T$ $-T$ $-T$ $-T$ $-T$ $-T$ $-T$ $-T$	6M	CO1	
square wave form shown	6M 6M		

			ode: 20	A4311	
4.		Find the Fourier transform of the following functions.			
		i) Impulse function f(t) ii) DC Signal			
		iii) Unit step function iv) Signum function	12M	CO2	L5
		OR			
5.	a)	State and prove the following Fourier transform properties:			
		(i) Time shifting (ii) Frequency shifting (iii) Convolution	6M	CO2	L2
	b)	Discuss about Hilbert transform.	6M	CO2	L2
		UNIT–III			
6.	a)	Explain causality and physical reliability of a system and			
		hence give Paley-Wiener criterion.	6M	CO3	L2
	b)	Obtain the relationship between the bandwidth and rise			
	,	time of ideal low pass Filter.	6M	CO3	L2
		OR			
7.	a)	State and prove the sampling theorem for band limited signals.	6M	CO3	L2
	b)	Discuss the effect of aliasing due to under sampling.		CO3	 L2
	,	UNIT-IV	•	000	
8.	a)	Determine the convolution of the signals $x(n) = \{2, -1, 3, 2\}$			
•		and $h(n) = \{1, -1, 1, 1\}$.	6M	CO4	L3
	b)	Define and prove the properties of convolution.		CO4	L3
		OR			
9.	a)	State and prove Parseval's power theorem for continuous			
	,	time signals.	6M	CO4	L3
	b)	Derive the relation between convolution and correlation.		CO4	L3
	,	UNIT-V			
10.	a)	State and prove initial value and final value theorems of			
	,	Laplace transform.	6M	CO5	L2
	b)	Det ^{lace tranie inverse Laplace o wing functions.}			
	,	ermine th $i) x(t) = \overline{s(s+1)(s+3)}$ i) $x(t) = \overline{s(s+1)(s+3)}$ i) $x(t) = \overline{(s+3)(s+3)}$ i) $x(t) = \overline{(s+3)(s+3)(s+3)}$ ii) $x(t) = (s+3)(s+3)(s+3)(s+3)(s+3)(s+3)(s+3)(s+3)$			
		<i>i</i>) $x(t) = s(s+1)(s+3)$ <i>ii</i>) $x(t) = (s+3)(s_2+6s+1)$	6M	CO5	L5
		OR			
11.	a)	State and prove time shifting and time convolution			
		properties of z- transform.	6M	CO5	L3
	b)	Find the inverse Z- transform of Z- transform			
		$1 + 3z^{-1}$			
		<i>ii</i>) $x(z) = \frac{1 + 3z^{-1}}{1 + 3z^{-1} + \frac{z^{-2}}{2}}$	6M	CO5	L5
		*** End ***	-		
			Pa	ge 2 of 2	

Code: 20A431T

Hall Ticket Number :		
Code: 20AC32T	-20	
II B.Tech. I Semester Supplmentary Examinations August 2022		
Transform Techniques & Complex Variables		
(Common to EEE and ECE) Max. Marks: 70	: 3 Hoi	Jrs

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.		
3. Answer ALL the questions in Part-A and Part-B		
<u>PART-A</u> (Compulsory question)		
1. Answer <i>all</i> the following short answer questions (5 X 2 = 10M)	со	Blooms Level
a) Find $L \left[\sin^3 3t \right]$.	CO	
b) Evaluate: $L^{-1} \left \frac{1}{(s+1)(s+2)} \right $.	CO	2 L3
$\lfloor (s+1)(s+2) \rfloor$		
c) Find the Fourier coefficient b_n of the Fourier series expansion for the	е	
function $f(x) = x^2$ in the interval $[0, 2f]$.	CO	3 L3
d) Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic eventwhere	c co	4 L1
everywhere.		
e) Find the poles and residues of $f(z) = \frac{e^{z}}{z(1+z)^{2}}$.	CO	5 L2
PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ Ma	rks)	
Ma		Blooms
	ks CC	Level
2. a) Find the Laplace Transformation of $f(t) = t e^{3t} \sin t$		
	M CO	1 L3
b) Prove that $\int_{0}^{\infty} \left(\frac{e^{-t} - e^{-3t}}{t}\right) dt = \log(3)$		
b) Prove that $\int_{0}^{t} t = \int_{0}^{t} e^{i\theta g(\theta)}$.	и со	1 L2
OR		
3. a) Find the Laplace Transform of $f(t) = \begin{cases} 1 & 0 \le t < a \\ -1 & a < t < 2a \end{cases}$ and $f(t)$		
$\begin{bmatrix} -1 & a < t < 2a \end{bmatrix}$		
	M CO	1 L1
b) Find the Laplace Transformation of $f(t) = \frac{e^{-t} \sin t}{t}$.		
t 6	M CO	1 L1
	_	6 -
	Page 1 ()† 3

UNIT-II

4. a) Apply convolution theorem to evaluate $L^{-1}\left(\frac{1}{(s^2+a^2)(s^2+b^2)}\right)$ 6M CO2 L3

b) Find the inverse Laplace Transformation of

$$F(s) = \frac{s^2 - 15s - 11}{(s+1)(s-2)^2}.$$
 6M CO2 L3

5. Solve the differential equation $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = t^2 e^{3t}; y(0) = 2; y'(0) = 6$ by using Laplace Transformation. 12M CO2 L3 **UNIT-III** 6. Find Fourier series of $f(x) = x + x^2$ in (-f, f) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f^2}{12}$. 12M CO3 L1 **OR** 7. Find Fourier Cosine and Sine transform of

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \\ 0 & x > 2 \end{cases}$$
12M CO3 L1

8. Show that the function $u = e^{2x} (x \cos(2y) - y \sin(2y))_{is}$ harmonic. Find the conjugate function v and express u + iv as an analytic function of z. 12M CO4 L1

9. Evaluate
$$\int_{C} \frac{e^{z}}{z(1-z)^{3}} dz$$
 where C is (i) $|z| = \frac{1}{2}$
(ii) $|z-1| = \frac{1}{2}$ (iii) $|z| = 2$. 12M CO4 L2

UNIT-V
10. a) Find Laurent's series of
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 for $1 < |z| < 3$.
b) State Cauchy Residue theorem and hence evaluate

$$\int_{c} \frac{\sin^{2} z}{\left(z - \frac{f}{6}\right)^{3}} dz$$
 where *C* the circle is $|z| = 1$.
OR
11. a) Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_{0} = 2i$.
M CO5 L3

b) State Cauchy Residue theorem and hence evaluate

$$\int_{C} \frac{\cos z}{(z-fi)^2} dz \text{ where } C \text{ is the circle } |z| = 5.$$
6M CO5 L3
*** End ***

Ha	all Ticket Number :									
Со	de: 20A433T	R-20)							
	II B.Tech. I Semester Supplmentary Examinations August 2022									
	Analog Circuits									
Мс	(Electronics and Communication Engineering) ax. Marks: 70	Time: 3	Hours							
No	 te: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 									
	<u>PART-A</u> (Compulsory question)									
1. A	nswer all the following short answer questions (5X2=10M)	CO	Bloo Lev							
a)	State Miller's theorem.	CO1	L1							
b)	List advantages of negative feedback.	CO2	L1							
c)	State Barkhausen criterion for oscillators	CO3	L1							
d)	Distinguish between Class A and Class B Power Amplifiers	CO4	L2	2						
e)	Define Clamping circuit theorem.	CO5	L1							
	PART-B									
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 0$	OU IVIARKS Marks) co	Blooms						
	UNIT–I	marito		Level						
2. a)	Discuss the frequency response of an amplifier.	4M	CO1	L2						
b)	A voltage source of internal resistance, R_s =900 drives a CC amplifier using load resistance R_L =2000. The CE h parameters are h_{fe} =60, h_{ie} =1200, h_{oe} =25µA/V and h_{re} =2x10 ⁻⁴ Compute A _I , R _i , A _v and R ₀ using approximate analysis. OR)	CO1	L3						
3. a)	Derive the parameters Ai, $R_i,\ A_v$ and R_0 of Common	1								
	Collector Amplifier using simplified hybrid model analysis		CO1	L3						
b)	State and prove Miller's theorem and its dual.	6M	CO1	L3						
4. a)	Explain the concept of feedback with block diagram?	6M	CO2	L2						
b)	Derive the expressions for Ri, Ro of Transistorized current series feedback amplifier.	t	CO2	L3						
5. a)	Derive the expressions of Gain, input and output resistances for a Voltage Shunt feedback amplifier.	6M	CO2	L3						
D)	Show that bandwidth of an amplifier can be improved by using negative feedback	-	CO2	L2						
6. a)	Explain the working principle of Wein-bridge oscillator using	a								
/	BJT and derive the expression for frequency of oscillations.	-	CO3	L3						

		Co	de: 20	A433T	
	b)	Determine the frequency of oscillations when a RC phase shift oscillator has R=100 k , C=0.01 μ F and R _C = 2.2 K . Also find the minimum current gain needed for this purpose. OR	6M	CO3	L3
7.	a)	Explain Hartley oscillator using BJT and derive the expression for its frequency of oscillations and condition for sustained oscillations.	6M	000	
				CO3	L3
	b)	Explain in detail the concept of stability in Oscillators.	6M	CO3	L2
8.	a)	Discuss Complementary Symmetry Class B Push Pull Power Amplifier with neat diagram and determine its	014		
		efficiency.		CO4	L2
	b)	Discuss crossover distortion in class B power amplifier.	4M	CO4	L2
		OR			
9.	a)	List the features of power amplifiers.	4M	CO4	L1
	0)	A series fed Class A amplifier shown in the Fig, operates from dc source and applied sinusoidal input signal generates peak base current of 9mA. Determine (i) Quiescent current I_{CQ} , (ii) Quiescent voltage V_{CEQ} , (iii) DC input power P_{DC} , (iv) AC output power P_{AC} and (v) Efficiency.			
		$R_{B} \ge 1.2 \text{ K}\Omega$ $R_{L} = 16 \Omega$ V_{0} V_{0} $Q, \beta = 40$			
10		L UNIT-V Draw the high page DC signal derive response of a	8M	CO4	L3
10.	a)	Draw the high pass RC circuit and derive response of a step input	<u>۵</u> ۱	005	1.2
				CO5	L3

step input b) Prove low pass RC circuit act as integrator 4M CO5

OR

11. a)	Design a double ended clipper which clips the waveform at			
-	two peaks and explain.	8M	CO5	L3
b)	List the applications of clippers.	4M	CO5	L1
	*** End ***			

L3

Hall Ticket Number :	R -2	20	
Left Code: 20A432T II B.Tech. I Semester Supplmentary Examinations August	2022]
Digital Logic Design			
(Electronics and Communication Engineering) Max. Marks: 70	Time:	3 Hou	rs
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10 \times 10^{-1})$) CC)	ooms evel
a) Convert (101011) ₂ = () _{Gray}	CO		L2
b) Simplify the following Boolean equation using K map			
F(x,y) = = m(1,3)	CO		L5
c) Draw the 2 to 4 Decoder diagram.	CO	-	L6
d) Write the characteristic equation of a JK flip-flop	CO	-	L6
e) Define a State Diagram.	CO	4	L2
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Mar	ks)	
	Marks	со	Blooms Level
UNIT–I			Level
a) Perform the subtraction using 2's complement method			
(11010) ₂ - (10000) ₂	6M	CO1	L2
b) Implement all the Basic Gates using Universal Gates.	6M	CO1	L2
OR			
a) Explain about binary codes with examples.	6M	CO1	L2
b) Realize $F(A,B,C) = AB + AC' + BC$ using only NAND	6M	004	
gates.	OIVI	CO1	L2
a) Convert F(X,Y,Z) = $X'Y + X'Z + YZ$ into canonical form			
(SSOP).	4M	CO2	L3
b) Simplify the following Boolean equation using K-map.			
F(W,X,Y,Z) = m(0,7,8,9,10,12) + d(2,5,13). Implement		_	
using simplified expression using NAND Gates	8M	CO2	L4
OR			

							Code	20A4321	L
5.	a)	Write the pro with K- Map			on method an	nd compar		CO2	L4
	b)	Prove the X'Y'+X'Y+X		ity of th	ne following	g equat		CO2	L4
				UNIT–I	11				
6.	a)	Implement th	ne Sum a	and carry of	Full Adder us	sing 2:1 M	UX 8M	CO3	L6
	b)	Design 4 to 2	2 Encod	er using ba	sic gates.		4M	CO3	L6
				OR					
7.	a)	Describe abo	out Ripp	le Adder wi	th suitable di	agram.	6M	CO3	L6
	b)	Implement 3	to 8 de	coder using	g 2 to 4 deco	ders	6M	CO3	L6
				UNIT-I	V				
8.	a)	Design D flip	flop us	ing SR flip f	Тор		6M	CO4	L2
	b)	Explain abou	ut 4 bit F	Ring counte	r		6M	CO4	L6
	-			OR					
9.	a)	Implement T	flip flop	using NAN	D gate.		6M	CO4	L2
	b)	Describe abo	out Mod	ulo N synch	nronous coun	ters	6M	CO4	L6
	,			UNIT-\	/				
10.		Reduce the	number	of states in	n the followin	g state ta	ble		
		and tabulate	the red	uced state	table in stand	lard form.			
			P.S	N.S,Z	N.S,Z]			
			F.3	X=0	X=1				
			А	E,0	D,1				
			В	F,0	D,0				
			С	E,0	B,1				
			D	F,0	B,0	_			
			E	C,0	F,1				
			F	B,0	C,0				
		Where P.S-p input	presents	state ,N.S	-Next state ,Z	-output,	X- 12M	CO4	L6
				OR				007	LU
4 4	c)	\A/rita a abam	hoote er		rt		<i>A</i> N <i>A</i>	00 ·	
11.		Write a short						CO4	L2
	b)	Explain abou	it finite	State Mach	ines.		8M	CO4	L2

*** End ***