\square

Code: 20AC36T

R-20

|| B.Tech. I Semester Supplmentary Examinations August 2022

Managerial Economics and Financial Analysis

(Common to CE \& ECE)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co
a) Law of diminishing marginal utility $\mathrm{CO1}$
b) Iso-quants and iso-costs CO 2
c) Characteristics of monopolistic competition. CO 2
d) Scope of capital budgeting CO 2
e) Double entry bookkeeping CO1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Discuss the nature and scope of managerial economics.

6 M CO 2
b) Elucidate the relationship of managerial economics with other areas.

6 M CO

OR

3. a) Define demand. Explain different types of demand.

6M CO1
b) Explain the law of demand and its exceptions.

6 M CO 2

UNIT-II

4. a) Explain the determinants of cost.

6 M CO 2
b) Identify different bases of cost classification.

6 m CO1

OR

5. Explain graphically the cost-output relationship in the long-run.

12M CO3

UNIT-III

6. a) State the characteristics of an oligopoly market.

6M CO2
b) Differentiate joint stock company and cooperative society form business.
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 1$

OR

7. State the forms and functions of different types of public
sector organizations.

UNIT-IV

8. a) Discuss the sources of raising capital.

6 M CO 2
b) Explain what is profitability index. Discuss which is a superior ranking criterion, profitability index or the net present value.

12 M CO L2

6M CO3 L3

OR

9. An investment would cost 100,000 and provide annual cash inflow of ${ }^{`} 21,150$ for 6 years. If the opportunity cost of capital is 10 per cent, calculate the Net Present Value (NPV) and Internal Rate of Return (IRR) of the investment.

UNIT-V

10. a) State the accounting principles and accounting
*** End ${ }^{* * *}$
conventions.
b) "Every debit must have a corresponding credit". Explain.

OR

11. a) Define ledger. Explain its importance in accounting process.

6 M CO 2
b) For Pavani Ltd., calculate debtor's turnover ratio from the flowing information:
Sundry debtors at beginning $\quad 20,00,000$
Sundry debtors at end `12,50,000
Sales \quad '25,50,250
6M CO1 L3
6 M CO 3 L 3

6 M CO
\square
Code: 20A431T

R-20

|| B.Tech. I Semester Supplmentary Examinations August 2022
Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Define periodic signal. Give the condition for periodicity of a discrete
time periodic signal. $\mathrm{CO1} \mathrm{L1}$
b) Obtain Fourier transform of signum function. CO . L2
c) Define System and signal bandwidth. CO3 L2
d) State Parseval's theorem. CO4 L3
e) What is the condition to be satisfied for the existence of Laplace transform?

CO5 L4
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Define Energy and power of a the following signal is Energy or Power signal and calculate energy or power. $\quad x(t)=e-2 t u(t)$
b) Enumerate any two basic operations that can be applied on signals with suitable examples.

6M CO1

OR

3. a) Determine the trigonometric form of Fourier series of the square wave form shown

6M CO1 L1
b) State and prove the following properties of continuous time Fourier series: i) Time shift ii) Differential in time domain

UNIT-II

4. Find the Fourier transform of the following functions.
i) Impulse function $f(t)$
ii) DC Signal
iii) Unit step function
iv) Signum function
12M CO2

OR

5. a) State and prove the following Fourier transform properties:
(i) Time shifting
(ii) Frequency shifting
(iii) Convolution
6M CO2
L2
b) Discuss about Hilbert transform.
$6 \mathrm{M} \mathrm{CO2}$

UNIT-III

6. a) Explain causality and physical reliability of a system and hence give Paley-Wiener criterion.
$6 \mathrm{M} \mathrm{CO3} \quad \mathrm{~L} 2$
b) Obtain the relationship between the bandwidth and rise time of ideal low pass Filter.

6M co3

OR

7. a) State and prove the sampling theorem for band limited signals.

6M CO3
b) Discuss the effect of aliasing due to under sampling.

6 M CO

UNIT-IV

8. a) Determine the convolution of the signals $x(n)=\{2,-1,3,2\}$ and $h(n)=\{1,-1,1,1\}$.

6 M CO4 L3
b) Define and prove the properties of convolution.
$6 \mathrm{M} \mathrm{CO4}$

OR

9. a) State and prove Parseval's power theorem for continuous time signals.
b) Derive the relation between convolution and correlation.

6M CO4
$6 \mathrm{M} \mathrm{CO4}$

UNIT-V

10. a) State and prove initial value and final value theorems of Laplace transform.

6M CO5
b) Detlace tran:e inverse Láplace o \quad oing functions.
ermine th
If the follol $\frac{3 s^{2}}{}$ ii) $x(t)=-\frac{3 s+6}{(s+8)\left(s_{2}^{2}+6 s+1\right)}$
6M cos

OR

11. a) State and prove time shifting and time convolution properties of z - transform.

6 M CO5 L3
b) Find the inverse ${ }_{z \text { - transfc }}^{\text {transform. }}$ rm of

$$
\text { ii) } x(z)=\frac{1}{1+3} \frac{1-3 z^{-} \cdot 1}{z-1}+\bar{z} \bar{z} \overline{-2}
$$

$$
6 \mathrm{M} \mathrm{cos}
$$

\square

Code: 20AC32T

II B.Tech. I Semester Supplmentary Examinations August 2022
Transform Techniques \& Complex Variables
(Common to EEE and ECE)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{co}$
a) Find $L\left[\sin ^{3} 3 t\right]$. CO1
b) Evaluate: $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$. CO2
c) Find the Fourier coefficient b_{n} of the Fourier series expansion for the function $f(x)=x^{2}$ in the interval $[0,2 \pi]$.
d) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic co4 everywhere.
e) Find the poles and residues of $f(z)=\frac{e^{z}}{z(1+z)^{2}}$.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Find the Laplace Transformation of $f(t)=t e^{3 t} \sin t$.

6M CO1
b) Prove that $\int_{0}^{\infty}\left(\frac{e^{-t}-e^{-3 t}}{t}\right) d t=\log (3)$.

6M CO1
L2

OR

3. a) Find the Laplace Transform of $f(t)=\left\{\begin{array}{ll}1 & 0 \leq t<a \\ -1 & a<t<2 a\end{array}\right.$ and $f(t)$ is periodic with period $2 a$.

6M CO1
b) Find the Laplace Transformation of $f(t)=\frac{e^{-t} \sin t}{t}$.

UNIT-II

4. a) Apply convolution theorem to evaluate $L^{-1}\left(\frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right)$
b) Find the inverse Laplace Transformation of

$$
F(s)=\frac{s^{2}-15 s-11}{(s+1)(s-2)^{2}} .
$$

OR

5. Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=t^{2} e^{3 t} ; y(0)=2 ; y^{\prime}(0)=6
$$

by using Laplace Transformation.
12M CO2

UNIT-III

6. Find Fourier series of $f(x)=x+x^{2}$ in $(-\pi, \pi)$ and hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \ldots .=\frac{\pi^{2}}{12}$.

12M CO3
7. Find Fourier Cosine and Sine transform of

$$
f(x)=\left\{\begin{array}{ll}
x & 0<x<1 \\
2-x & 1<x<2 \\
0 & x>2
\end{array} .\right.
$$

UNIT-IV

8. Show that the function $u=e^{2 x}(x \cos (2 y)-y \sin (2 y))$ is harmonic. Find the conjugate function v and express $u+i v$ as an analytic function of z.

OR

9. Evaluate $\int_{C} \frac{e^{z}}{z(1-z)^{3}} d z$ where C is (i) $|z|=\frac{1}{2}$
(ii) $|z-1|=\frac{1}{2}$
(iii) $|z|=2$.
[^0]
UNIT-V

10. a) Find Laurent's series of $f(z)=\frac{1}{(z+1)(z+3)}$ for $1<|z|<3$.

6M CO5 L2
b) State Cauchy Residue theorem and hence evaluate $\int_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ where C the circle is $|z|=1$. OR
11. a) Expand $f(z)=\frac{1}{1-z}$ in a Taylor series with center $z_{0}=2 i$.
b) State Cauchy Residue theorem and hence evaluate

$$
\int_{C} \frac{\cos z}{(z-\pi i)^{2}} d z \text { where } C \text { is the circle }|z|=5
$$ 6M CO5 L3

Code: 20A433T
|| B.Tech. I Semester Supplmentary Examinations August 2022

Analog Circuits

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
 (Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M})$
b) List advantages of negative feedback.
c) State Barkhausen criterion for oscillators
d) Distinguish between Class A and Class B Power Amplifiers CO3 L1
b) List advantages of negative feedback.
c) State Barkhausen criterion for oscillators
d) Distinguish between Class A and Class B Power Amplifiers CO4 L2
b) List advantages of negative feedback.
c) State Barkhausen criterion for oscillators
d) Distinguish between Class A and Class B Power Amplifiers CO5 L1
e) Define Clamping circuit theorem.
a) State Miller's theorem.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I
2. a) Discuss the frequency response of an amplifier.
b) A voltage source of internal resistance, $\mathrm{R}_{\mathrm{s}}=900$ drives a CC amplifier using load resistance $R_{L}=2000$. The CE h parameters are $h_{f e}=60, h_{i e}=1200, h_{\text {oe }}=25 \mu A / V$ and $h_{r e}=2 \times 10^{-4}$. Compute A_{l}, R_{i}, A_{v} and R_{0} using approximate analysis.

OR

3. a) Derive the parameters $\mathrm{Ai}, \mathrm{R}_{\mathrm{i}}, \mathrm{A}_{v}$ and R_{0} of Common Collector Amplifier using simplified hybrid model analysis
b) State and prove Miller's theorem and its dual. UNIT-II
4. a) Explain the concept of feedback with block diagram?
b) Derive the expressions for Ri, Ro of Transistorized current series feedback amplifier.

OR

5. a) Derive the expressions of Gain, input and output resistances for a Voltage Shunt feedback amplifier.
b) Show that bandwidth of an amplifier can be improved by using negative feedback

6M co2 L2

UNIT-III

6. a) Explain the working principle of Wein-bridge oscillator using BJT and derive the expression for frequency of oscillations.
b) Determine the frequency of oscillations when a RC phase shift oscillator has $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=0.01 \mu \mathrm{~F}$ and $\mathrm{R}_{\mathrm{C}}=2.2 \mathrm{~K}$. Also find the minimum current gain needed for this purpose. OR
7. a) Explain Hartley oscillator using BJT and derive the expression for its frequency of oscillations and condition for sustained oscillations.
b) Explain in detail the concept of stability in Oscillators.

UNIT-IV

8. a) Discuss Complementary Symmetry Class B Push Pull Power Amplifier with neat diagram and determine its efficiency.
b) Discuss crossover distortion in class B power amplifier.

OR

9. a) List the features of power amplifiers.
b) A series fed Class A amplifier shown in the Fig, operates from dc source and applied sinusoidal input signal generates peak base current of 9 mA . Determine (i) Quiescent current $I_{c Q}$, (ii) Quiescent voltage $\mathrm{V}_{\text {CEQ }}$, (iii) DC input power $P_{D C}$, (iv) $A C$ output power $P_{A C}$ and (v) Efficiency.

UNIT-V
10. a) Draw the high pass $R C$ circuit and derive response of a step input

8M Co5 L3
b) Prove low pass RC circuit act as integrator

OR

11. a) Design a double ended clipper which clips the waveform at two peaks and explain.

8M Co5
b) List the applications of clippers.
$4 \mathrm{M} \mathrm{CO5}$

Code: 20A432T
II B.Tech. I Semester Supplmentary Examinations August 2022

Digital Logic Design

(Electronics and Communication Engineering)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad$ CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Convert $(101011)_{2}=(\ldots \ldots \ldots . .)_{\text {Gray }}$ CO1 L2
b) Simplify the following Boolean equation using K map $F(x, y)=)=\sum m(1,3)$ CO2 L5
c) Draw the 2 to 4 Decoder diagram. CO3 L6
d) Write the characteristic equation of a JK flip-flop CO3 L6
e) Define a State Diagram. CO4 L2
PART-BAnswer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Perform the subtraction using 2's complement method$(11010)_{2}-(10000)_{2}$
6M CO1L2
b) Implement all the Basic Gates using Universal Gates.

6M CO1

OR

3. a) Explain about binary codes with examples. 6M CO1 L2b) Realize $F(A, B, C)=A B+A C \cdot+B C$ using only NANDgates.
6M CO1 L2
UNIT-II
4. a) Convert $F(X, Y, Z)=X^{\prime} Y+X^{\prime} Z+Y Z$ into canonical form (SSOP).
b) Simplify the following Boolean equation using K-map. $F(W, X, Y, Z)=\sum m(0,7,8,9,10,12)+\sum d(2,5,13) . \quad$ Implement using simplified expression using NAND Gates

8 M CO2 OR
5. a) Write the procedure for tabulation method and compare it with K- Map technique.

8M CO2
b) Prove the identity of the following equation $X^{\prime} Y^{\prime}+X^{\prime} Y+X Y=X^{\prime}+Y$

4 M CO 2
6. a) Implement the Sum and carry of Full Adder using 2:1 MUX

8M CO3
b) Design 4 to 2 Encoder using basic gates.

4 M CO

OR

7. a) Describe about Ripple Adder with suitable diagram.

6M CO3
b) Implement 3 to 8 decoder using 2 to 4 decoders

6 M CO

UNIT-IV

8. a) Design D flip flop using SR flip flop

6M CO4 L2
b) Explain about 4 bit Ring counter

OR

9. a) Implement T flip flop using NAND gate.
$6 \mathrm{M} \mathrm{CO4}$
b) Describe about Modulo N synchronous counters

6 M CO

UNIT-V

10. Reduce the number of states in the following state table and tabulate the reduced state table in standard form.

P.S	N.S,Z X=0	N.S,Z $\mathrm{X}=1$
A	$\mathrm{E}, 0$	$\mathrm{D}, 1$
B	$\mathrm{F}, 0$	$\mathrm{D}, 0$
C	$\mathrm{E}, 0$	$\mathrm{~B}, 1$
D	$\mathrm{F}, 0$	$\mathrm{~B}, 0$
E	$\mathrm{C}, 0$	$\mathrm{~F}, 1$
F	$\mathrm{B}, 0$	$\mathrm{C}, 0$

Where P.S-present state ,N.S. -Next state ,Z-output, Xinput

OR

11. a) Write a short note on ASM Chart.
b) Explain about Finite State Machines.

4M CO4
12M CO4 L6

8M CO4

[^0]: 12M CO4

