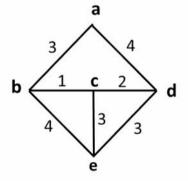

Hall Ticket Number :											
Code: 20AC33T	R-20										
II B.Tech. I Semester Supplementary Examinations June 2024											
Discrete Mathematics											
(Common CSE, AI&DS, AI&ML, CSE(AI) and CS Max. Marks: 70	Time: 3 Hours										

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B											
<u>PART-A</u> (Compulsory question)											
1. Answer all the following short answer questions (5 X 2	= 10M) CO BL										
a) Write the converse and contrapositive statement of the sta	,										
rain, then I buy an umbrella".	1 L1										
b) Find the generating function for $f_n = 3^n$, $n \ge 0$ in closed form	1. 2 L1										
c) Give an example of a monoid which is not a group. Justify	your answer. 3 L1										
d) How many vertices are needed to construct a graph with	7 edges, in which										
each vertex of degree 2?	4 L1										
e) Write the properties of tree.	5 L1										
<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each un	it (5 x 12 = 60 Marks)										
Answer me questions by choosing one question nom each an	Marks CO BL										
UNIT-I											
2. a) Define Tautology and contraction. Verify whether th	e formula										
$((p \rightarrow r) \land (q \rightarrow r)) \rightarrow ((p \lor q) \rightarrow r)$ is tautology or not.	6M CO1 L3										
b) Use the indirect method to show that											
$R \to \neg Q, R \lor S, S \to \neg Q, P \to Q \Longrightarrow \neg P.$	6M CO1 L3										
OR 3. a) Obtain principle disjunctive normal form of the formu	eli										
($\neg p \rightarrow r$) \land ($q \leftrightarrow p$).											
	6M CO1 L3										
b) Explain automatic theorem proving with an example	. 6M CO1 L4										
4. a) Define recurrence relation. Find the first four	terms of										
, $a_k = 2a_{k-1} + k$ for all integers $k \ge 2, a_1 = 1$.	6M CO2 L3										
b) Solve the recurrence relation by using the character											
method $a_n + 4a_{n-1} + 4a_{n-2} = 8$ for $n \ge 2$ given $a_0 = 1, a_1 = 1$	=2. 6M CO2 L3										
OR											
5. a) Solve the recurrence relation											
$a_n - a_{n-1} = 3n + 2$, $a_0 - 1$, $n \ge 1$ by substitution r	method 6M CO2 L3										
b) Use the generating method to solve the recurrenc											
$a_n - 6a_{n-1} + 8a_{n-2} = 3^n$, $n \ge 1$ where $a_0 = 3$, and $a_1 = 3^n$	= 7 . 6M CO2 L3										
UNIT-III 6 a) Draw the Hasse diagram for the poset (P(A) -	whore										
6. a) Draw the Hasse diagram for the poset $(P(A), \subseteq A = \{a, b, c\}$											
$A = \{a, b, c\}.$	6M CO3 L3										
	Dage 1 of 2										

- b) Determine whether the following relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive on the set $A = \{1, 2, 3, 4\}$, $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}.$ 6M CO L3 OR 7. a) Let f and g be functions from R to R defined by f(x) = ax + band $g(x) = 1 - x + x^2$, if $(g \circ f)(x) = 9x^2 - 9x + 3$, determine *a*, *b* values. 6M CO3 L3 b) Let G be the set of all non-zero real numbers and let $a * b = \frac{ab}{4}$, Show that (G,*) is an abelian group. 6M CO3 L2 UNIT-IV 8. a) Define the following with examples: (i) Degree of a vertex (ii) Complete Graph (iii) Regular graph. 6M CO4 L2
 - b) Define (i) Adjacency matrix (ii) Incidence matrix of simple graph with example. 6M CO4 L2

OR


9. a) State the necessary condition for two graphs to isomorphic. Verify the following two graphs are isomorphic or not.

- b) Define (i) Euler's path (ii) Euler circuit (iii) Hamiltonian path. 6M CO4 L1
- 10. a) Write an algorithm to obtain a minimum spanning tree and illustrate the algorithm with an example.
 - b) Define (i) Rooted tree (ii) Binary tree (iii) Spanning tree.

OR

11. a) Find the weight of the minimal spanning tree of the following graph by using Kruskal's algorithm.

6M CO5 L4

6M CO5 L3

6M CO4 L3

6M CO5 L3

6M CO5 L1

b) Draw the all different spanning trees of complete bipartite graph $K_{2,2}$

	Hall	Ticket	Number :															
L	Code	e: 20A	С35Т	1		1		1				J		1		R-20)	
Code: 20AC35T Il B.Tech. I Semester Supplementary Examinations June 2024																		
							-	eme										
	Max.	. Mark	-	imor	1 C S	E, AI	&D3	, AI8 ****			(AI)	ana	CSE	E(DS))		ne: 3	Hours	
	Note		estion Pape				•		-		nd P	art-E	3)					
			art-A, each wer ALL the	•														
		J. AIIJ		- que	.500	13 111	i art		<u>RT-A</u>									
	1 Ar	a curar	all the fell	owir		•	-				•	(5)	x 2	- 10N	4 \	С	O BL	
			<i>all</i> the foll s any two		-				•			`		= 10N ficant	'			
			zation.	Tou	0011	0.0	101	•	ana	gom	on			noun	in a			
	b) W	Vrite a	brief note	e on	any	/ on	e im	por	tant	feat	ure	of H	IRM	l .		CC	D2 L5	
	c) R	ecall	Harris Ba	sic E	EOC) for	mul	a ar	nd its	s ele	eme	nts.				CC	D3 L1	
	d) N	lame	any three	sou	rces	s of	fina	ncin	g to	stai	tup	indu	ustri	es.		CC	D4 L1	
	e) C	outline	e the impo	rtan	ce c	of M	arke	eting	Ma	trix.						CC	D5 L1	
PART-B																		
		Answe	r <i>five</i> questi	ons t	oy ch	oosir	ng on	e qu	estio	n fro	m ea	ch ur	nit (:	5 x 12 =	= 60 N	larks)	
										1					Ν	/larks	СО	BL
_		-						_	IT-I									
2.	a)		erentiate k								-					6M	CO1	L1
	b)	•	ain chan	ging	js s	skills	s of	ma	inag	jer	in g	loba	al v	/orkin	g	CN 4		
		envi	ronment.					~								0IVI	CO1	L2
~						1 7	1-)R	4 - N	4					4014		
3.		DISC	uss Henr	'y ⊢a	ayo	rs c	onti		tion IT-II		vian	age	me	nt.	-	1211	CO1	L1
4.		Sum	marize fo	الم	vinc	ı sta					nen	t nra	۱CO	se.				
.		a)	Selectio		-		got		1001	anti		r pro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50.				
		⊆, b)	Inductio													12M	CO2	13
		- /						C	DR								001	20
5.	a)	Wha	it are the	e re	aso	ns	for			nce	e of	Pe	rfor	manc	e			
•••	•.)		raisal?								•				•	6M	CO2	L3
	b)	Disc	uss impo	rtar	ce	of J	ob /	Ana	lysis	5.							CO2	
	,							UN	•									
6.	a)	Diffe	erentiate k	oetv	veei	n PE	ERT	an	d C	PM.						6M	CO3	L1
	b)	Wha	t are the c	obje	ctive	es o	f Inv	ento	ory I	Man	age	men	t Co	ontrol	?	6M	CO3	L1

Code: 20AC35T

OR

7.	a)	What inferences can be arrived from ABC analysis?	6M	CO3	13
	b)	Discuss any three factors that affects Plant Location.		CO3	
	D)		OIVI	003	L1
8.		Explain methods of Investment Analysis with simple			
0.		example/s.	12M	004	1.4
		•		CO4	L4
		OR			
9.	a)	What are the different sources of financing?	6M	CO4	L1
	b)	Discuss following two concepts in brief:			
		i) Net Present Value			
		ii) Profitability Index	6M	CO4	L1
		UNIT-V			
10.	a)	Explain following types of Market Segmentation:			
	-	i) Demographic			
		ii) Geographic	6M	CO5	L2
	b)	Describe Marketing Mix with simple example	6M	CO5	L3
	,	OR			
44	a)	••••		CO5	
11.	a)	What do you understand from Market Segmentation?	6M	CO5	L1
	b)	Discuss core concepts that are important in marketing *** End ***	6M	CO5	L1

	7	1								-1				
Hall Ticket Number :												R-20		
Code: 20A532T												K-20		
ll B.Tech. I Sem			• •			•					e 202	4		
Object				-			-	-	-					
(Common	CSE	:, Al8	&DS,	Al&	ML, (CSE(Al) c	and	CSE	(DS)			0.110	
Max. Marks: 70			×	****	****						IIn	ne: 3 H	ours	
Note: 1. Question Paper cor	sists	of tv	<i>к</i> ор	arts (Part	-A aı	nd Pa	art-B)					
2. In Part-A, each ques			•		•				•					
3. Answer ALL the que	stion	s in	Part-	A an	d Pa	rt-B								
				PAR										
		•	•	lsor	•••		•							
1. Answer <i>all</i> the following s						•	2 = ′	10M)			CO	BL	
a) List at least two benefits					rload	ing						1	L2	
b) List at least two uses of	abst	ract	class									2	L1	
c) Define exception handli	ng wi	th ar	n exa	mple	•							3	L1	
d) Define synchronization	in the	e con	text	JAVA	A prog	gram	ming					4	L2	
e) Discuss Java Lambda e	expre	ssior	าร									5	L2	
				PAR	<u>Т-В</u>									
Answer five questions by	' cho	osin	g on	e qu	estic	on fro	om e	ach	unit	(5 x	12 = 6	60 Mark	s)	
						_						Marks	CO a	
				UNI	T-I									
Discus and elaborate the			ice c	of thr	ee o	bjec	t ori	enteo	d pro	ogram	ming			
principles with a suitable pr	ograi	m.										12N	l 1	
				0										
Describe the working med								cept	two	objec	ts as	401		
parameters and return an c	object	, sup	porte			ogra	m.					12N	l 1	
Chow the concept of working				UNI			ما م	o: d:						
Show the concept of runtim multilevel inheritance with a	•		•		ing n	iethc	aov	erria	ng ir	i cont	extor	12N	12	
	Jun	ipic I	Jiogi	0 0	R							1210		
Examine the necessity ar	nd ar	onlic	ation			or"		ord	with	a sa	mnle			
program.		Shire	ation	5 01	Sup		\Cyvv	oru	vvitii	α 36	inple	12N	2	
													_	
Explain the working mecha	nism	of in				 a san	nple	code	bv ł	niahlia	htina			
the constants and methods		••••							~) .			12N	12	
				0	R									
Discuss the concept of mul	tiple	catch	n stat	emei	nts w	ith a	n exa	ample	e.			12N	12	
	-			UNIT	-IV			-						
Explain how inter-thread of	comn	nunic	atior	woi	rks ir	ן ו Jaי	/a p	rogra	mmi	ng, w	vith a			
sample program.								-		-		12N	I 3	
				0	R									
Explain the working mecha	nism	of ge	enerio	c sup	er cla	ass a	nd g	eneri	c su	bclass	s with			
a sample program.						_						12N	I 3	
				UNI	Г-V									
Illustrate how to pass Lam	bda	expre	essio	n as	an a	argur	nent	to a	met	hod v	vith a		_	
sample program.												12N	4	
				0										
Explain the working mechan			•						prog	gramn	ne for	4.01		
HashMap and TreeMap for	addi	ng ai		movi ** En	U	e ele	emen	tS.				12N	4	
			*	** 「〜	-1 ***									

	R-20		
Code: 20A533T			
II B.Tech. I Semester Supplementary Examinations June 20 Computer System Architecture	JZ4		
(Common CSE, AI&DS, AI&ML, CSE(AI) and CSE(DS))			
Max. Marks: 70	ime: 3 H	lours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer all the following short answer questions $(5 \times 2 = 10 \text{ M})$		со	BL
a) Convert (27.35)8 to the base of 10.		01	L3
b) Explain computer architecture in detail	C	02	L2
c) Explain the functions of an address bus and data bus	C	01	L2
d) Draw block diagram of combinational and sequential circuit	C	02	L4
e) Write the instruction formats.	C	02	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$) Marks))	
	Marks	СО	BL
UNIT-I			
a) What do you mean by complement of a number? Explain			
1's and 2's complement method.	6M	CO1	L2
b) Obtain the 1's and 2's complement of the following eight			
binary numbers			
i) 10101110 ii) 10000001 iii) 1000000			
	6M	CO1	L3
iv) 00000001 v) 0000000	0		
	0		
iv) 0000001 v) 0000000	6M	CO1	L2
iv) 00000001 v) 00000000 OR		CO1 CO1	
iv) 00000001 v) 00000000 OR a) Explain the functional architecture of the computer system.	6M		
 iv) 0000001 v) 00000000 OR a) Explain the functional architecture of the computer system. b) Discuss about fixed point and floating point representations 	6M		
 iv) 0000001 v) 00000000 OR a) Explain the functional architecture of the computer system. b) Discuss about fixed point and floating point representations UNIT-II a) Simplify the following Boolean function using four variable K-map. Also draw logic diagram of original and simplified 	6M 6M		
 iv) 0000001 v) 00000000 OR a) Explain the functional architecture of the computer system. b) Discuss about fixed point and floating point representations UNIT-II a) Simplify the following Boolean function using four variable 	6M		L3
 iv) 0000001 v) 00000000 OR a) Explain the functional architecture of the computer system. b) Discuss about fixed point and floating point representations UNIT-II a) Simplify the following Boolean function using four variable K-map. Also draw logic diagram of original and simplified 	6M 6M	CO1 CO1	L3

Code: 20A533T

5. a) b)	Draw and explain the full adder using 8 to 1 multiplexer. Explain how a program is executed in reality. Do make sure that your explanation details about PC, MAR, MBR,	6M	CO2	L2
	IR, etc registers.	6M	CO2	L2
6. a)	Write and explain algorithm for floating point addition.	6M	CO1	L2
b)	Explain the three different types of instruction formats used			
	in basic computer	6M	CO1	L1
	OR			
7. a)	What is an addressing mode? List various addressing modes and write brief notes on each.	6M	CO1	14
b)	For the pattern $X = (A+B)^*(C+D)$, explain three-, two-, one-	OIVI	COT	LI
6)	and zero-address instructions by giving the syntax.	6M	CO1	L1
	UNIT-IV			
8. a)	What are the three types of CPU organizations and explain with an example?	6M	CO1	12
b)	Illustrate multiple bus organization with neat diagram		CO3	
/	OR		000	
9. a)	Write short notes on Hardwired Control and Micro-			
-	programmed Control	6M	CO2	L4
b)	Draw and explain the concept of memory hierarchy.	6M	CO1	L2
10.	What is DMA? Explain DMA transfer in a computer system	12M	CO2	L4
	OR			
11. a)	What are handshaking signals? Explain the handshake			
	control of data transfer during input and output operation.	6M	CO2	L4
b)	Explain the functions of typical input-output interface. ** End ***	6M	CO1	L2

	Ha	all Ticket Number :			1
	Coc	le: 20A531T		R-20	
	Max	II B.Tech. I Semester Supplementary Examination Database Management Systems (Common CSE, AI&DS, AI&ML, CSE(AI) and CS x. Marks: 70	SE(DS))	4 ne: 3 Hours	i
	Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B PART-A 			
		(Compulsory question)			
			5 X 2 = 10l	M) CO	BL
	a)	Explain significance of Data Dictionary in DBMS?		CO1	L2
	,	Define a View		CO2	L1
		Give Syntax of SQL		CO3	L1
		Explain Disadvantages of Normal Forms		CO4	L2
	e)	What are TCL commands in DBMS		CO5	L2
	Ar	<u>PART-B</u> nswer <i>five</i> questions by choosing one question from each uni	it (5 x 12 = 6	0 Marks)	
		······································	Marks	-	BL
		UNIT-I			
-	a)	Compare and Contrast Delete and Drop	4M	CO1	L2
	b)	Analyze the Architecture of DBMS with diagram	8M	CO1	L4
		OR			
•	a)	Who are the different types of database end user			
		Discuss the main activities of each		CO1	L1
	b)	Compare and Contrast File System and DMBS?	6M	CO1	L2
•	a)	Explain Domain Constrains with examples	6M	CO2	L3
	b)	Explain any 3 Key Constraints with examples	6M	CO2	L3
		OR			
-	a)	Explain Various types of attributes in E-R Model w	/ith		
		symbols and example	6M	CO2	L3
	b)	Explain Weak entity with example	6M	CO2	L3

		UNIT-III			
6.		Consider the following relations			
		Sailors(sid, sname,rating, age)			
		Boats(bid, bname, color)			
		Reserves(sid, bid, day)			
		Write the statements in relational Algebra, Relational			
		calculus, Domain Relational calculus and SQL for the			
		following.			
		a) Find the names of sailors who have reserved a Read boat.			
		b) Find the names of sailors who have reserved at least one boat.			
		c) Find the names of sailors who have reserved Red and Green boat.			
		 d) Find the names of sailors who have reserved Red or a White boat. 			
		e) List all sailors names			
		f) List all red color bid	12M	CO3	L4
		OR			
7.	a)	Compare and Contrast Views and Table	6M	CO3	L2
	b)	Analyze Set Operators with examples	6M	CO3	L3
		UNIT-IV			
8.	a)	Explain 1NF and 2NF with examples	6M	CO4	L3
	b)	Explain Multivalued dependency and 4NFwith example	6M	CO4	L3
		OR			
9.	a)	Explain Lossless Join Decomposition with examples	6M	CO4	L3
	b)	Explain Armstrong's Axioms in Functional Dependency			
		in DBMS	6M	CO4	L2
		UNIT-V			
10.	a)	What are properties of transaction	6M	CO5	L2
	b)	Explain Serializability with example	6M	CO5	L3
		OR			
11.	a)	Why concurrency control is needed demonstrate with			
		example	6M	CO5	L3
	b)	Explain about lock based concurrency control.	6M	CO5	L3
		*** End ***			