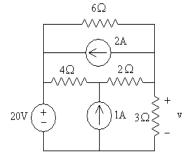
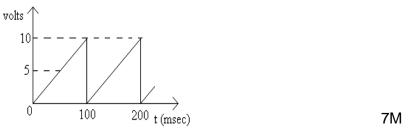
Γ	Hall	Ticket Number :												_		
C	ode	e: 1G536								<u></u>					R-11/R-13	
		II B.Tech. I Seme	estei	r Su	pple	eme	entc	ıry E	xan	nina	tion	s No	over	mk	per 2016	
Fluid Mechanics and Hydraulic Machines (Electrical and Electronics Engineering)																
	-	a. Marks: 70 Answer all five units	•							•		•	5 x 14		lime: 3 Hours 70 Marks)	
1	a)	Explain how vacuu	mnr	26611	re ca		***** maa		1 with	tha l	heln (רן ו f	tubo r	mai	nometer	4M
	b)	A U-tube containin water and is conne level with the free atmosphere, if the	ig me ected e sur	ercury to a face	y has pipe of r	s its r conta nercu	ight ainin 1ry. I	limb g wa [.] Find	open ter ur the	to a Ider I press	tmos oress sure	phere ure, of wa	e. The the ce ater i	e le ent	eft limb is full of er of which is in	10M
2.	a)	Determine and dist flow (iii) rotational	•			• • •		dy an	d uns	stead	y flow	/ (ii) ເ	unifor	m a	and non-uniform	6M
	b)	An incompressible combine to dischar 0.2 m diameter pip m diameter pipe.	ge in	a pi	be of	0.3 n	n dia	mete	r. If th	ne av	erage	e velo	ocities	s in	the 0.15 m and	8M
3.	a)	What is a compou pipe?	nd pi	pe?	How	woul	ld yo	u de	termi	ne th	e eq	uivale	ent si	ize	of a compound	6M
	b)	Two reservoirs are <i>3d</i> respectively, ar determine the disc 1 cumec.	nd the	ey ar	e of	same	e len	gth L	. As	sumir	ng ft	o be	the s	san	ne for all pipes,	8M
4.	a)	A jet of water mov the jet through 120 moving at 5 m/s, fir absolute velocity of)° (th nd the	at is e ang	the v le of	/ane the je	angl et so	es that t	and there	are is no	each shoc	n equ ck at	ial to inlet.	30). If the vane is	14M
5.	a)	What is a 'mass cu	rve'?	Expl	lain tl	ne pr	oced	ure f	or pre	eparir	ng a r	nass	curve	e ai	nd also its uses.	8M
	b)	What do you under demerits?	rstand	d by	pump	oed s	torag	ge typ	be of	powe	er sta	tion?	Wha	at ar	e its merits and	6M
6.		A reaction turbine and the flow area i are 20° and 60° res power developed a	s 0.4 specti	m². ⊺ vely	The a with	ingles the ta	s ma angei	de by ntial v	y the veloci	abso ty. D	lute a etern	and r nine t	elativ he vo	ve v olun	elocities at inlet ne flow rate, the	14M
7.		The following data diameter 1 m: P _u discharge and spea kW. Determine the	= 30 ed of).695 a sin	; Q _u nilar	= 10 runne	08.6; er wo	N _u : rking	= 63. unde	6. E	stima	te th	ie rur	nne	r diameter, the	14M
8.		A single acting red 250 mm. The pisto are 5 m and 15 m (ii) force required to of suction and deli	on ma respe o woi	akes ective rk the	50 d ely. F e pist	ind (i on du	e stro) dis uring	kes charថ the s	per m ge ca suctio	ninute pacit on an	e. The y of t d del	e suc he pu ivery	tion a ump in strok	and in li kes	delivery heads ters per minute; if the efficiency	
		operate the pump.					**	*								14M


	ket Number :										
	R-11/R-13										
Code: 1	B.Tech. I Semester Supplementary Examinations November 2016										
	Engineering Mathematics										
	(Common to EEE & ECE)										
Max.	Marks: 70 Time: 3 Hours Answer any five questions										
	All questions carry equal marks (14 Marks each)										
1 0)	********										
1. a)	Solve the following system of equations by Gauss elimination method $2x_1 + 2x_2 + 4x_3 = 18$, $x_1 + 3x_2 + 2x_3 = 13$, $3x_1 + x_2 + 3x_3 = 14$.										
b)	Given the matrix $A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 2 & 9 \\ 0 & 0 & 5 \end{pmatrix}$, find the Eigen values of A, A^2, A^{-1} . 4M										
,	$\begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 5 \end{bmatrix}$, and the Eigen values of A, A, A, A .										
2.	Using Runge-Kutta method of fourth order ,solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given										
	y(0) = 1 at $x = 0.2, 0.4$. 14M										
3. a)	Fit a straight line for the following data										
	x 1 2 3 4 5 6										
	y 6 4 3 5 4 2 7M										
b)	Calculate correlation coefficient 'r' for the following data										
	x 50 60 70 90 100										
	y 65 51 40 26 8 7M										
4. a)	Form a partial differential equation by eliminating the arbitrary function 'f' from $z = f(x^2 + y^2)$.										
ь)											
b)	Solve the partial differential equation $pxy + pq + qy = yz$ using Charpit's method. 7M										
5. a)	Obtain the Fourier series for $f(x) = \left(\frac{f-x}{2}\right)^2 in \ 0 < x < 2f$.										
b)											
b)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce										
b)											
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ 7M										
b) 6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{x} - \frac{1}{x} + \frac{1}{x} - \frac{1}{x} + \dots$										
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$. Hence prove that										
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ 7M										
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{1}^{\infty} \frac{\sin s - s \cos s}{x^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$										
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode.										
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 \ if \ x \le 1 \\ 0 \ if \ x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70$										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ 7M										
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function:										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 30 40 50 60 70 \\ \hline No. of students \qquad 8 12 20 10 6 4 \qquad 7M$ A random variable x has the following probability function: $\boxed{x 0 1 2 3 4 5 6 7}$										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function:										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70 \\ No. of students \qquad 8 \qquad 12 \qquad 20 \qquad 10 \qquad 6 \qquad 4 \qquad 7M$ A random variable x has the following probability function: $X \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \\ y \qquad 0 \qquad K \qquad 2K \qquad 2K \qquad 3K \qquad K^2 \qquad 2K^2 \qquad 7K^2+K \qquad From the following the following probability function:$										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function: $\boxed{\frac{x 0 1 2 3 4 5 6 7}{y 0 K 2K 2K 3K K^2 2K^2 7K^2+K}}$ (i) Find the value of 'K'										
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{\frac{Marks}{No. of students} \frac{20}{8} \frac{30}{40} \frac{40}{50} \frac{50}{60} \frac{60}{70}}{\frac{No. of students}{8} \frac{8}{12} \frac{20}{20} \frac{10}{6} \frac{6}{4}}$ A random variable x has the following probability function: $\boxed{\frac{x}{9} \frac{0}{1} \frac{1}{2} \frac{2}{3} \frac{4}{5} \frac{5}{6} \frac{7}{7}}{\frac{y}{0} \frac{1}{16} \frac{2}{12} \frac{3}{16} \frac{4}{12} \frac{5}{16} \frac{6}{16} \frac{7}{16}}{\frac{1}{16} \frac{1}{16} \frac{1}$										
6. 7. a) b)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70 \\ \hline No. of students \qquad 8 \qquad 12 \qquad 20 \qquad 10 \qquad 6 \qquad 4 \qquad 7M$ A random variable x has the following probability function: $\boxed{\frac{x 0 1 2 3 4 5 6 7}{y 0 K 2K 2K 3K K^2 2K^2 7K^2 + K}$ (i) Find the value of 'K' (ii) Evaluate P(X<6), P(X 6) (iii) Evaluate P(0 <x<5) 7m<="" \qquad="" td=""></x<5)>										

		icket Number :	
<u> </u>		R-11 / R-13	3
		1G231 B.Tech. I Semester Supplementary Examinations November 2016	
		Switching Theory and Logic Design	
		(Electrical and Electronics Engineering)	
\sim	lax.	Marks: 70 Time: 3 Hou Answer any five guestions	rs
		All Questions carry equal marks (14 Marks each)	
1.	a)	Represent +25 and -25 in sign-magnitude, sign-1's complement and sign-2's complement representation	5M
	b)	Explain error detection codes.	5M
	c)	Construct even parity 7 bit hamming code for the message 0100.	4M
2.	a)	What are universal gates? Realize AND, OR, NOT, XOR gates using universal gates.	5M
	b)	Simplify the following Boolean functions to a minimum number of literals:	
		(i) $x + x^{2}y$ (ii) $x^{2}(x^{2} + y^{2})$	
		(ii) $x (x' + y)$ (iii) $x'y'z + x'yz + xy'$	
		(iv) xy + x'z + yz.	5M
	c)	Prove that AND-OR network is equivalent to NAND-NAND network	4M
3.	a)	Simplify the following Boolean function for minimal SOP form using K-map.	
		F (W, X, Y, Z) = (0, 1, 2, 3, 4, 6, 8, 9, 10, 11)	7M
	b)	Simplify the following Boolean functions using K-map.	
		(i) $F(A, B, C) = A'B + B'C + A'B'C'$ (ii) $F(A, B, C) = A'B' + AC' + B'C + A'BC'$	7M
4.	a)	Design $4x16$ decoder using two $3x8$ decoders with block diagram.	7M
т.	b)	What is meant by Hazards? Explain the different types of Hazards. Obtain Hazard	7 101
	~)	free realization circuit for the function: $f(A, B, C, D) = m(0, 2, 6, 7, 8, 10, 12)$.	7M
5.	a)	Design a combinational circuit using PROM that converts a 3-bit binary number to	
		equivalent excess-3 code.	7M
0	b)	Explain the general combinational PLD configuration with suitable block diagram.	7M
6.	a) b)	Show how mod-12 JK counter could be built using mod-3 & mod-4 counters.	7M
	b)	Design a sequential circuit with two D-Flip-Flops A and B and one input x. When $x=0$, the state of the circuit remains the same. When $x=1$, the circuit goes through	
		the state transitions from 00 to 01 to 11 to 10 back to 00 and repeats.	7M
7.	a)	Discuss mealy and Moore machine models of sequential machines	7M
	b)	Explain the minimization procedure for determining the set of equivalent state of a specified machine M.	7M
8.	a)	Explain the salient features of the ASM chart.	7M
	b)	Draw an ASM chart and state diagram for the synchronous circuit having the following description:" The circuit has a control input 'x', clock and outputs A and B. If $x = 1$, on every clock edge (rising of falling) the code on BA changes from $00 \grave{E} 01 \grave{E} 10 \grave{E} 11 \grave{E} 00$ and repeats. If $x = 0$, the circuit holds the present state".	7M
			7 111


Hal	ll Tic	ket Number :										
Code	e: 10	R-11/R	-13									
	II B.	Tech. I Semester Supplementary Examinations November 2010	6									
		Electrical Machines-I										
May	e M	(Electrical and Electronics Engineering) arks: 70 Time: 3 H	Hours									
11107	.	Answer any five questions	10015									
		All questions carry equal marks (14 Marks each)										
1.		Derive an expression for co-energy density of an electromechanical energy										
		conversion device.										
2.	a)	Derive an equation for the EMF of DC generator.	7M									
	b)	A 6-pole DC generator has 150 slots. Each slot has 8 conductors and each conductor has resistance of 0.01 . The armature terminal current is 15 A.										
		Calculate the current per conductor and the drop in armature for Lap and										
		Wave winding connections.	7M									
3.		Draw the performance characteristics of different types of DC generators and										
		explain them.	14M									
4.	a) Two separately-excited DC generators are connected in parallel and sup											
		a load of 200 A. the machines have armature circuit resistances of 0.05 and 0.1 and induced EME's of 42 V and 440 v respectively. Determine the										
		0.1 and induced EMF's of 42 V and 440 v respectively. Determine the terminal voltage, current and power output of each machine. The effect of										
		armature reaction is to be neglected.	7M									
	b)	Explain the various methods of commutation	7M									
5.		Explain armature reaction and commutation in detail.	14M									
6.		Write short notes on the load characteristics of (a) D.C. shunt motor (b) D.C.										
		compound motor (c) D.C. series motor	14M									
7.		Explain various methods for speed control of										
		a) D.C shunt motor	4 4 5 4									
		b) D.C Series motor	14M									
8.		Explain in detail following										
		a) Swinburne's test										
		b) Hopkinson testc) Retardation test	14M									
		***	1-1111									

Hall Ticke	et Number :														
Code: 1G	233					1	1				J	I	R-11/R-1	3	
II B.1	Tech. I Sem	este	er Su	Jpp	lem	ent	ary l	Exar	mino	atio	ns N	lover	nber 2016		
				Ele	ectr	ical	Cir	cuit	s-I						
		(Ele	ectri	cal d	and	Elec	tron	ics E	ngin	eeri	ng)				
Max. Ma	arks: 70												Time: 3 Hours		
	A	ll que	estio			equa	ive (1 ma *****	•		arks	each	ר)			
	Define the folle	owing	g teri	ms: (Char	ge, V	oltag	je, ci	urren	t, po	wer,	active	and passive	7M	
b) E	Explain curren	t divi	sion	and	volta	ge d	ivisio	n rul	es.					7M	
2. a) E	Define the terr	ns N	ode,	Path	, loo	p, br	anch	, netv	work	and	circu	it		7M	

b) Find the value of 'v' for the circuit given in figure using nodal analysis

3. a) Find average value , RMS value and form factor for the following waveform

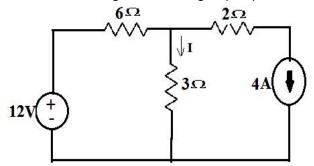
b) Write the conditions for phase comparison of sinusoidal signals. Find the phase angle by which $V_1(t)$ leads $V_2(t)$.

$$V_1(t) = 230 \sin (100t+30^{\circ}) \text{ volts}$$

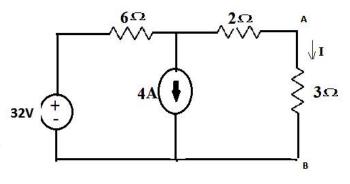
 $V_2(t) = 120 \cos (100t+90^{\circ}) \text{ volts}$ 7M

4. a) Find the value of v(t) for the following circuit

 $10\cos(10t + 75^{\circ}) \xrightarrow{(1)}_{i(t)} \underbrace{(1)}_{i(t)} \underbrace{(1)}_{0.05 \text{ F}} \underbrace{(1)}_{-} \underbrace{(1)}_{i(t)} \underbrace{(1)}_{0.05 \text{ F}} \underbrace{(1)}_{-} \underbrace{(1)}_{$


b) A series RLC circuit with R= 100, L= 10mH is driven by an a.c. source of 230 V and 50Hz. Find the value of capacitor 'C' such that the circuit will be under resonance. Find the values of current, voltage across inductor and capacitor. Find the real and reactive powers absorbed by R, L and C.
7M

7M


7M

7M

- 5. a) Find the relation between Line voltages and phase voltages, Line currents and phase currents for a balanced three phase delta connected system. draw the phasor diagram showing the phase relations.
 - b) A balanced star connected load having per phase impedance of Z_L= 40+j30 is driven by a balanced star connected source of 110 V/ phase having negative phase sequence. Determine line currents, phase currents, line voltages, phase voltages, real and reactive power consumed by the load.
- a) Explain the concepts of self & mutual inductance. Derive the expression for coefficient of coupling for two magnetically coupled coils having self inductances L₁, L₂ and a mutual inductance of M.
 7M
 - b) Find the equivalent inductance of two magnetically coupled coils with self inductances L₁, L₂ and mutual inductance M connected in series aiding and opposition.
- 7 a) Find the current 'I' for the following circuit using super position theorem

b) Find the thevinin's equivalent circuit between terminals A and B for the following circuit and then find the current in 3 load resistor.

- 8. a) State and explain reciprocity theorem
 - b) State and explain millman's theorem

7M

7M 7M

7M

Hall Tic	ket Number :											Г	
Code: 10	G234										_	R-11/R-1	3
II B.	Tech. I Seme	ester S	uppl	eme	entc	iry E	xan	ninc	atior	ns No	over	nber 2016	
			Elect		-								
Max. M	arks: 70	(Electri	cal a	ind E	lect	ronic	cs Er	ngin	eerir	ng)		Time: 3 Hc	ours
					any fi								010
	All	Questio	ons co		equa		•	4 Mo	arks e	each)		
1. a)													9M
b)	A point char F1=5a _x -10a _y +1	•	•				•			•			5M
2. a)		s an Ele		•									ЗM
		the exp Dipole.		n for	Pote	ential	and	Elec	ctric I	-ield	Inten	sity due to an	
b)	Two point cha	•		and	0	-211		hated	at (0	05)	and (0.0 -0.5)	4M
5)	respectively. T	0	these	two	char	•			``		,	(, , , ,	
	ii) E at	: P.											7M
3. a)	Derive the Die			•									9M
b)	Determine the 35x40 cm sur stored by the o	face are capacita	ea, sej nce, i	parat f the	ed b capa	y 8 r icitor	nm ii is ch	n air narge	. Det	ermiı	ne the	e total energy	
4. a)	500V. What is the energy density of the capacitor? Derive the expression for Magnetic field intensity due to a straight thin current											5M	
4. α)	carrying filame			ayın			interi.	Sity		0 a 3	aigi		7M
b)	A current elem a field dH at E dH at point	8(4,-5,4)	. i) G	ive a	a unit	vect	or in	the	direc	tion	of dH	· / ·	
5. a)	Derive the Am	iperes C	ircuit	Law	in po	int fo	rm a	nd ir	n inte	gral f	orm.		6M
b)	A uniform sol current of I=5, solenoid i) at	A and 2	00 tu	rns. I	Find	the r	nagr	netic	field	inter	nsity c		
6. a)	Derive the exp		-		-							onductor in a	
	magnetic field	•			Ū			•					6M
b)	A rectangular fi (1,2,0), and (0, and determine	2,0). Th	e loop	carri	es a o	curre	nt of	5A. F	Find t	he to	tal for		
7. a)	Derive Neuma	ann's for	mula f	or M	utual	Indu	ictan	ce.					7M
b)	An iron ring of of the core is the core is to b exciting curren of self-inducta	uniform be 1.5 Te nt requir	ly wou esla ai ed to	ind v nd re be pa	vith 4 lative assec	00 tu e peri	urns meat	of th bility	e wir of iro	e. If	the flour=50	ux density on 0, What is the	!
8. a)	Explain the m magnetic field		ons o	f Ma	xwell	's eo	quatio	ons 1	for tir	me v	aryinç	g electric and	9M
b)	Find the cond material havin the material is	g condu	ctivity	of 10)-4 S	ieme ⁹)t v	ens/m	n and				-	

-1