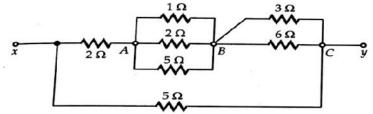
	ket Number :
	R-11/R-13
Code: 1	B.Tech. I Semester Supplementary Examinations November 2016
	Engineering Mathematics
	(Common to EEE & ECE)
Max.	Marks: 70 Time: 3 Hours Answer any five questions
	All questions carry equal marks (14 Marks each)
1 0)	********
1. a)	Solve the following system of equations by Gauss elimination method $2x_1 + 2x_2 + 4x_3 = 18$, $x_1 + 3x_2 + 2x_3 = 13$, $3x_1 + x_2 + 3x_3 = 14$.
b)	Given the matrix $A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 2 & 9 \\ 0 & 0 & 5 \end{pmatrix}$, find the Eigen values of A, A^2, A^{-1} . 4M
,	$\begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 5 \end{bmatrix}$, and the Eigen values of A, A, A, A .
2.	Using Runge-Kutta method of fourth order ,solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given
	y(0) = 1 at $x = 0.2, 0.4$. 14M
3. a)	Fit a straight line for the following data
	x 1 2 3 4 5 6
	y 6 4 3 5 4 2 7M
b)	Calculate correlation coefficient 'r' for the following data
	x 50 60 70 90 100
	y 65 51 40 26 8 7M
4. a)	Form a partial differential equation by eliminating the arbitrary function 'f' from $z = f(x^2 + y^2)$.
ь)	
b)	Solve the partial differential equation $pxy + pq + qy = yz$ using Charpit's method. 7M
5. a)	Obtain the Fourier series for $f(x) = \left(\frac{f-x}{2}\right)^2 in \ 0 < x < 2f$.
	(2)
b)	
b)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce
b)	
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ 7M
b) 6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{x} - \frac{1}{x} + \frac{1}{x} - \frac{1}{x} + \dots$
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$. Hence prove that
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ 7M
·	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{1}^{\infty} \frac{\sin s - s \cos s}{x^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode.
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 \ if \ x \le 1 \\ 0 \ if \ x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70$
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ 14M From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ 7M
6.	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function:
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 30 40 50 60 70 \\ \hline No. of students \qquad 8 12 20 10 6 4 \qquad 7M$ A random variable x has the following probability function: $\boxed{x 0 1 2 3 4 5 6 7}$
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function:
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70 \\ No. of students \qquad 8 \qquad 12 \qquad 20 \qquad 10 \qquad 6 \qquad 4 \qquad 7M$ A random variable x has the following probability function: $X \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \\ y \qquad 0 \qquad K \qquad 2K \qquad 2K \qquad 3K \qquad K^2 \qquad 2K^2 \qquad 7K^2+K \qquad From the following the following probability function:$
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks 20 30 40 50 60 70}{No. of students 8 12 20 10 6 4}$ A random variable x has the following probability function: $\boxed{\frac{x 0 1 2 3 4 5 6 7}{y 0 K 2K 2K 3K K^2 2K^2 7K^2+K}}$ (i) Find the value of 'K'
6. 7. a)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{\frac{Marks}{No. of students} \frac{20}{8} \frac{30}{40} \frac{40}{50} \frac{50}{60} \frac{60}{70}}{\frac{No. of students}{8} \frac{8}{12} \frac{20}{20} \frac{10}{6} \frac{6}{4}}$ A random variable x has the following probability function: $\boxed{\frac{x}{9} \frac{0}{1} \frac{1}{2} \frac{2}{3} \frac{4}{5} \frac{5}{6} \frac{7}{7}}{\frac{y}{0} \frac{1}{16} \frac{2}{12} \frac{3}{16} \frac{4}{12} \frac{5}{16} \frac{6}{16} \frac{7}{16}}{\frac{1}{16} \frac{1}{16} \frac{1}$
6. 7. a) b)	Find the half-range sine series for $f(x) = x(f - x)$ in $(0, f)$ and deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$ Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x \le 1 \\ 0 & if x > 1 \end{cases}$. Hence prove that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos\left(\frac{s}{2}\right) ds = \frac{3f}{16}.$ From the following data of the marks obtained by 60 students of a class, calculate the arithmetic mean, median and mode. $\boxed{Marks} \qquad 20 \qquad 30 \qquad 40 \qquad 50 \qquad 60 \qquad 70 \\ \hline No. of students \qquad 8 \qquad 12 \qquad 20 \qquad 10 \qquad 6 \qquad 4 \qquad 7M$ A random variable x has the following probability function: $\boxed{\frac{x 0 1 2 3 4 5 6 7}{y 0 K 2K 2K 3K K^2 2K^2 7K^2 + K}$ (i) Find the value of 'K' (ii) Evaluate P(X<6), P(X 6) (iii) Evaluate P(0 <x<5) 7m<="" \qquad="" td=""></x<5)>

						R-11 / R13	
Hall Ticket Number :							

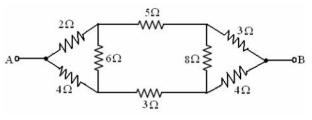
Code: 1G236

II B.Tech. I Semester Supplementary Examinations November 2016

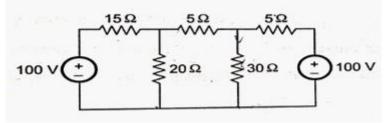
Electrical Circuit Theory

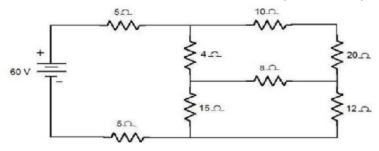

(Electronics and Communication Engineering)

Max. Marks: 70


Answer any five questions.

All Questions carry equal marks (14 Marks each)


- 1. a) Explain in detail the Voltage and Current relationship in R, L and C elements. What are meant by independent and dependent sources? Give examples.
 - b) Find the equivalent Resistance across the terminals X-Y for the circuit shown below?


2. a) Find the Resistance across the terminals 'A-B' for the circuit as shown in the following figure.

b) Find the current through 30 resistance using Nodal analysis?

3. a) In the network shown below, find the current delivered by the battery.

7M

7M

b) State the properties of series R-L-C Resonance circuit and obtain the Resonance frequency?

7M

7M

7M

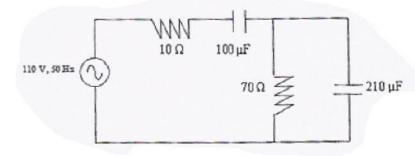
7M

Time: 3 Hours

- 4. a) A Circuit consists of resistance of 15 ohms, a capacitance of 200µF and inductor of 0.05H all in series. If the supply of 230V, 50Hz is applied to the ends of the circuit, Calculate : (i) Current in the coil (ii) Potential difference across each element (iii) Draw the Phasor diagram.
 - 7M

7M

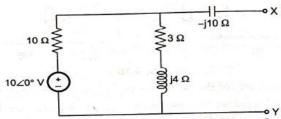
7M

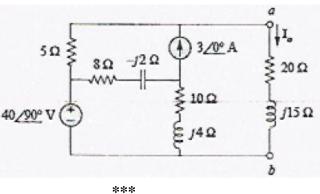

7M

7M

7M

7M


- b) Derive the relation between self inductance, Mutual Inductance and Coefficient of Coupling.
- 5. a) Determine the total impedance, total current and phase angle for the following circuit


b) A series connected RLC circuit has R = 4 Ohms and L = 25mH
(i) Calculate the value of C that will produce a quality factor of 50

(ii) Find 1, 2 and Bandwidth

- 6. a) Define the band width and derive the expression for bandwidth of series resonating circuit and its relation with Q factor.
 7M
 - b) A coil of resistance 10 and inductance 0.1 H is connected in series with a 150 μF capacitor across 200V,50 Hz supply. Calculate (i) Inductive reactance, Capacitance reactance, impedance, current and power factor. (ii) resonant frequency and Quality factor
- 7. a) State and explain Telligen's and Compensation Theorem.
 - b) Obtain the Thevenin's equivalent of network shown below between the terminals X-Y?

- 8. a) State Maximum Power Theorem and derive the condition for Maximum Power Transferred from Source to the resistive load?7M
 - b) Find the current I_{o} for the circuit shown in the following figure by using Norton's Theorem.

7M

Hall Ticl	ket Number :]		
Code: 1G	331							<u></u>				R-11/	′R-13
II B.Tech. I Semester Supplementary Examinations November 2016										16			
Electronic Circuits (Electronics and Communication Engineering)													
Max. Ma	•	ciron	ICS C	ind Co	JMM	UNIC	allo	n En	gine	enn	g)	Time: 3	3 Hours
	All	quest		nswer a carry e	,				rks ∈	each	1)		
1. a)	State and prov	e Mille	er's T	heorer	n								4M
	Given a sing ,h _{fe} =50,h _{oe} =25 transistor confi	µA/V a	and I	า _{re} =2.5	*10 ⁻⁴	.Calc			•				C 10M
2. a)	i. Explain ii. What is respons	the e	ffect	of cou	oling	and b	•	ss ca	ipaci	itor o	n the	frequenc	3M y 5M
b)	Derive the exp			•	•		strap	ped	darli	ngtor	n circu	uit.	6M
,	Derive the exp						•	•		•			n
·	of frequency									-			7M
,	A transistor I C _{b'c} =12pF.Dete										f _⊤ =80	MHz and	d 7M
,	Classify the a diagrams. How	•						•	••		•		
	Draw the curre A_{if} , A_{vf} , R_{if} and $R_2 = 20 K$, h_{fe}	d R _{of} if	R _C =	1K ,	R _e =1	00	C _e :	-					
5. a)	State the stabi	lity cor	nditic	n in tei	rms o	f Boc	le plo	ots					3M
	What are the What is their s				itions	of c	scilla	ations	s in	elect	tronic	systems	? 4M
,	With a neat cir BJT and find a		•	•		•				•	oscill	ator using	g 7M
	Explain the wo What are its ac	•		mplem	entar	y syn	nmet	ry cla	ass E	3 pus	sh pul	l amplifiei	⁻ . 7М
	A push pull cla loudspeaker th identical transi	rough stors ເ	an io used	deal tra	insfor circuit	mer l t has	navin V _{CE(s}	ng Ce _{sat)} =0	entre .6V.	tap. Assi	Each uming	of the two	
	calculate suital State the appli				•		sipa	teu p		ansis	5101.		3M
,	What is a stag				•		its w	vorkir	ng?				5M
c)	What is the e	effect	of c	ascadii	ng or	n sin			•	ole t	uned	amplifier	
	Explain the op						es re	gulat	tor?				5M
,	Define Line an							-					5M
C)	Explain various	s IC vo	oltage	e regula	ators **	*							4M

Hall Ticket Number : R-11 / R-13 Code: 1G332 R-11 / R-13 Il B.Tech. I Semester Supplementary Examinations November 2016 Pulse and Digital Circuits B.Tech. I Semester Supplementary Examinations November 2016 Pulse and Digital Circuits Max. Marks: 70 Time: 3 Hours Answer any five questions Time: 3 Hours All Questions carry equal marks (14 Marks each) ********* 1. a) Define linear wave shaping? Discuss the response of RC low-pass circuit with step and pulse inputs along with output waveforms. 8M b) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies. 7M 2. a) Explain the RC differentiator with input and output waveforms. 7M b) What is an attenuator? Define clamping theorem? 7M 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain 7M 7M 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams 7M b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP and LTP 7M
 II B.Tech. I Semester Supplementary Examinations November 2016 Pulse and Digital Circuits (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours Answer any five questions All Questions carry equal marks (14 Marks each) ************************************
Pulse and Digital Circuits (Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours Answer any five questions All Questions carry equal marks (14 Marks each) ******** Time: 3 Hours 1. a) Define linear wave shaping? Discuss the response of RC low-pass circuit with step and pulse inputs along with output waveforms. 8M b) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies. 6M 2. a) Explain the RC differentiator with input and output waveforms. 7M b) What is an attenuator? Define clamping theorem? 7M 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it? 7M 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams 7M b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP 7M
 Max. Marks: 70 Time: 3 Hours Answer any five questions All Questions carry equal marks (14 Marks each) ************************************
Answer any five questions All Questions carry equal marks (14 Marks each) ********* 1. a) Define linear wave shaping? Discuss the response of RC low-pass circuit with step and pulse inputs along with output waveforms. B) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies. B(M) 2. a) Explain the RC differentiator with input and output waveforms. B) What is an attenuator? Define clamping theorem? C(M) 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it? C(M) 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams D(M) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
*******1. a) Define linear wave shaping? Discuss the response of RC low-pass circuit with step and pulse inputs along with output waveforms. b) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies.8M2. a) Explain the RC differentiator with input and output waveforms. b) What is an attenuator? Define clamping theorem?7M3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it?7M4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams7Mb) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP7M
 step and pulse inputs along with output waveforms. b) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies. 2. a) Explain the RC differentiator with input and output waveforms. b) What is an attenuator? Define clamping theorem? 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b. What do you mean by delay time of a transistor? What are the factors contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
 b) A 1KHz square wave output from an amplifier has rise time tr = 200ns and percentage of tilt is 10%, determine lower and upper frequencies. 2. a) Explain the RC differentiator with input and output waveforms. b) What is an attenuator? Define clamping theorem? 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
percentage of tilt is 10%, determine lower and upper frequencies.6M2. a) Explain the RC differentiator with input and output waveforms. b) What is an attenuator? Define clamping theorem?7M3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it?7M4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP7M
 b) What is an attenuator? Define clamping theorem? 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain b) What do you mean by delay time of a transistor? What are the factors contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
 3. a) Explain how transistor acts as a switch? Draw the characteristics and explain 7M b) What do you mean by delay time of a transistor? What are the factors contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
 b) What do you mean by delay time of a transistor? What are the factors contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
 contribute to it? 4. a) Draw a neat diagram of bi-stable multivibrator using transistor and explain its working with help of timing diagrams b) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
working with help of timing diagrams7Mb) Explain Schmitt trigger circuit with neat waveforms. Derive expressions for UTP
5. a) What is meant by boot strapping? Explain the principle of operation and
working of a bootstrap sweep circuit with the help of neat diagrams. 6M
 b) What are the different methods of generating a time base waveform? Explain them briefly 8M
6. a) What is meant by sampling gates? Explain the working of four diode sampling
gate with help of neat circuit diagram.Draw the circuit of an emitter coupled bi-directional sampling gate and explain
 b) Draw the circuit of an emitter coupled bi-directional sampling gate and explain in detail 7M
7. a) Explain the method of pulse synchronization of relaxation devices with examples 6M
b) Explain the principle of synchronization in sweep circuits and describe how frequency division synchronization is done in estable relevation circuits with the
frequency division synchronization is done in astable relaxation circuits with the help of neat diagrams 8M
8. a) Explain DTL and RTL circuits with suitable circuit diagrams 8M
b) Explain the working of TTL-NAND with suitable circuit diagram 6M

Hall Tio	ket Number :]
Code:	1G333 R-11 / R-	13
II E	B.Tech. I Semester Supplementary Examinations November 2016 Random Variables and Random Processes (Electronics and Communication Engineering)	
Max. N	Aarks: 70 Time: 3 Ho	ours
	Answer any five questions All Questions carry equal marks (14 Marks each) ********	
1. a)	What is Baye's theorem? Explain.	7M
b)	What is Poisson Distribution? Explain in brief.	7M
2. a) b)	Write short notes on Moments about origin and Moments about mean A random variable X has the density function $f_X = 1/a e^{-b1x1} - x$	7M
,	Find E[X], E[X ²]	7M
3. a)	State and prove properties of joint CDF	7M
b)	If the function $f_{XY} = be^{-2x} \cos(y/2) : 0 \times 1$	
	0:0 y 0: elsewhere	
	Where 'b' is a positive constant is valid joint density function, find 'b'.	7M
4. a)	Discuss transmission of Random process through linear system.	7M
b)	Explain the spectral characteristics of system response.	7M
5. a)	Derive the expression for bandwidth of noise system.	7M
b)	Derive the expression for effective input noise temperature?	7M
6. a)	Explain about different types of random process.	7M
b)	Explain about time averages and ensemble averages of random process.	7M
7. a)	State and prove the properties of Auto-correlation Function.	7M
b)	State and prove the properties of Cross-correlation Function	7M
8. a)	State and prove the properties of Power spectral density.	7M
b)	Find the Power spectral density of a random process $z(t) = x(t) + y(t)$, where $x(t)$ and $y(t)$ are zero mean , individual random process. ***	7M