<u>`</u> ~~	le: 4GC32						<u> </u>	[[]		R-14	
	II B.Tecl	h ISar	nastai	r Sunnl	amar	ntarv	Evar	nina	tion		omba	or 2016	
	II D.ICCI	1. 1 001	103101	Engine						13 1 10 0	CIIIDC	21 2010	
				-	mmon								
	ax. Marks:											ne: 3 Hour	S
nsv	ver all five	units b	y choc	osing or		estion		each	า บท	it (5 x	14 = 70) Marks)	
						UNIT	-1						
a)	Show that	the Reg	gula-Fa	lsi metho	od has	super	linear	conv	erge	nce.			
b)	Employ T	aylor's n	nethod	to obtai	n appro	opriate	e value	e of g	y at	x = 0.2	for the	e differential	I
	equation	$\frac{dy}{dt} = 2x + \frac{dy}{dt}$	$-3e^x$, y	(0) = 0.	Compa	are the	nume	erical	solut	ion obta	ained w	ith the exact	t
	solution.	dx											
	301011011.					OR							
a)	Using the	bisectio	n meth	od, find	a real	root o	of the	equa	tion	$\cos x = x$	xe ^x cori	ect to three	¢
	decimal p	laces.											
b)	Apply fou	rth order	Runae	e-Kutta n	nethod	to $\frac{dy}{dx}$	x = 3x	$+\frac{1}{v}$	v(0)=1 to	deteri	mine $y(0.1)$	
,						dx		2,)(0)		····· c) (-··-)	
	correct to	tour dec	imal pla	aces.									
2)	From the	following	toblo	ootimote				Idonte	, wh	o obtoin	ad ma	rka hatwaan	
a)	40 and 45	-						laents	S WII	o optain	eu ma	rks between	1
		Marks		30-		40-50)-60	60)-70	70-80		
		No. of	studen	ts 3	1	42		51		35	31		
b)	Find $f'(7$.5) from	the foll	lowing ta	ble:								
		x	7.47	7.48	7.4	9	7.50	7.5	51	7.52	7.53	3	
	-	f(x)	0.193	0.195	0.19	98 C	.201	0.2	03	0.206	0.20	8	
		5 ()				OR						-	
a)	One entry	in the	followin	a table	is inco		and v	is a d	cubic	; polvna	mial ir	n x. Use the	è
- /	difference			•			•						
			х	0 1	2	3	4	5	6	7			
				25 21	18	18	27	45	76	123			
b)	Velocity V table. Esti	•				•			•	•	•	the following	J
		S(m)		2.5	5.0	7.5	10.0	12.				0	
		V(m/sec		19	21	22	20	17		3 1			
	L		,			UNIT-				•	·	<u> </u>	
a)	The press	sure and	volume	e of a <u>q</u> a	s are r	elated	by the	e equ	atior	$PV^{x} =$	k, x a	and k being	J
	constants			-			•	-					
	P(kg/c	2)	0.5	1.0	1.	5	2.0		2.5	3.0)		
	V (lite		1.62	1.00	0.7		0.62).52	0.4			
	v une	13/	1.02										

b) Solve
$$(x^2 - yz) p + (y^2 - zx) q = (z^2 - xy)$$
.

6. a) Using the method of separation of variables, solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ subject to the condition

OR

$$u = 0$$
 and $\frac{\partial u}{\partial y} = 1 + e^{-3y}$, when $x = 0$ for all values of y.

b) Obtain the least square fit of the form $f(t) = ae^{-3t} + be^{-2t}$ for the following data

t	0.1	0.2	0.3	0.4
f(t)	0.26	0.58	0.44	0.35

7M

7M

7M

Code: 4GC32

UNIT–IV

a) Obtain a half range cosine series for $f(x) = \begin{cases} kx, & 0 \le x \le \frac{l}{2} \\ k(l-x), & \frac{l}{2} \le x \le l \end{cases}$. Deduce the sum of the 7. series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \infty$.

the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| \ge 1 \end{cases}$. Hence evaluate b) Find

 $\int_0^\infty \frac{x\cos x - \sin x}{x^3} \cos x / 2 \ dx$

If $f(x) = \begin{cases} 0, & -f \le x \le 0\\ \sin x, & 0 \le x \le f \end{cases}$, Prove that $f(x) = \frac{1}{f} + \frac{\sin x}{2} - \frac{2}{f} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$. Hence show 8. that $\frac{1}{1\cdot 3} - \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} - \dots = \frac{1}{4}(f-2)$ 14M UNIT–V

OR

- a) Let A be a $m \times n$ matrix, then prove that ... $(A) = ... (A^T)$. 9.
 - b) Solve the system of equations: $x_1 x_2 + x_3 + x_4 = 2$; $x_1 + x_2 x_3 + x_4 = -4$; $x_1 + x_2 + x_3 x_4 = 4$; $x_1 + x_2 + x_3 + x_4 = 0.$ 8M
- Determine the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$ 10. a)
 - b) State and prove the Cayley Hamilton theorem.

7M

7M

8M

6M

6M

Hall 7	Ficke	et Number :	
Code	e: 40	G231 R-14	
		ech. I Semester Supplementary Examinations November 2016 Switching Theory and Logic Design (Electrical and Electronics Engineering)	
		Time: 3 Hou Il five units by choosing one question from each unit (5 x 14 = 70 Marks	
AU 13 VV	eru	*****)
4		UNIT-I	
1.	a)	 I. Simplify the following expressions i) A¹(B¹+C) ii) A¹+ B¹+ ABC¹) 	
		iii) $xy + wxyz^1 + x^1y$	
		II. What are error detecting and error correcting codes	8M
	b)	 A 7 bit hamming code is transmitted through a noisy channel. Find the error assuming a single error has occurred. The given message is 1010101 	
		ii) Find the 9's and 10's complement of $(92466)_{10}$	6M
		OR	
2.	a)	, · · · · · · · · · · · · · · · · · · ·	6M
	b)	ii) State and prove Demorgan's theoremi) State any four properties of XOR gate	OIVI
	D)	ii) What are Universal gates? Implement NOT, AND & OR gates using Universal gates	8M
		UNIT–II	
3.	a)	i) Simplify using Boolean Algebra and implement using Basic gates	
		$XYZ + XYZ^{1} + XY^{1}Z + X^{1}Y^{1}Z + X^{1}YZ^{1}$	
		 ii) Demonstrate by means of truth table the validity of I. Associative Law 	
		II. Commutative Law	6M
	b)	i) Prove that OR - AND Network is equal to NOR – NOR gate.	
		ii) Simplify using K map F(A,B,C,D) = (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)	8M
		OR	
4.	a)	i) Show that ABC + A B C ¹ + AB ¹ C+A ¹ B ¹ C+A ¹ B C ¹ =B ¹ C+AB+A ¹ B C ¹	
		ii) Simplify using binary method $F = M(0, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15)$.	8M
	b)	 i) Express the Boolean F= A¹ (B + C¹) as a product of max – terms 	OIVI
	5)	ii) What is K map? State its advantages and limitations.	6M
5.	a)	i) Draw the Block diagram of 3 to 8 decoder? Implement the following function using decoder F= (0, 2, 4, 5, 6, 7)	
		 What is magnitude comparator? Implement a 2 bit magnitude comparator using Basic gates 	8M
	b)	Implement the following expressions using PLA	
		$F_1 = m(1, 2, 4, 6, 7), F_2 = m(0, 1, 2, 4, 6)$	6M
0	-)	OR	
6.	a)	i) Explain a 4 bit parallel adder with an example.ii) What is an encoder? Explain with circuit diagram a 8 line to 3 line priority encoder.	7M
	b)	i) Draw the circuit of 3 bit fast adder and Explain	
	,	i) Implement the following expressions using PROM	
		$F_1 = m(0, 1, 2, 4, 6, 7), F_2 = m(0, 1, 2, 4, 6)$	7M
		Page 1	of 2

		UNIT–IV										
7.	a)	i) Convert SR Flip-Flop into D Flip-Flop.										
		Design a mod-12 synchronous counter using T Flip-Flop.										
	b)	Compare combinational and sequential circuits.										
		ii) What is race around condition? How it can be eliminated	6M									
		OR										
8.	a)	a) i) Design a four bit Johnson counter. Explain with example.										
		ii) Write the excitation table of JK & T Flip-Flops	7M									
	b) i) Explain with truth table SR Flip-Flop and JK Flip-Flop											
		ii) Design a 4 bit synchronous binary counter using JK Flip-Flo	op 7M									
		UNIT-V										
9.	a)	What are the limitations of FSM										
		Define the state equivalence and machine equivalence with re	ference to									
		sequential machines. Reduce the state table below.										
		PS NS/Z										
		X=0 X=1										
		A FIO BIO										

	X=0	X=1
А	F 0	B 0
В	D 0	C 0
С	F 0	E 0
D	G 1	A 0
Е	D 0	C 0
F	F 1	B 1
G	G 0	G 0
Н	G 1	A 0

i) State Mealy and Moore machines give their comparisons b)

ii) Discuss the various blocks of ASM chart

OR

10. a) What is Mealy and Moore Machines? Give example.

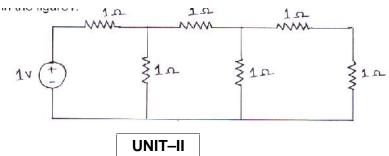
b) Convert the following Mealy Machine into Moore Machine

PS	NS	S,Z
10	X=0	X=1
А	C,0	B,0
В	A,1	D,0
С	B,1	A,1
D	D,1	C,0

8M

8M

6M


6M

F	lall T	icket Number :												1
Co	de:	4G232				.]		_]					R-14	
		I B.Tech. I Sen	nester S	upp	olerr	nen	tary	Exc	amir	natio	ons N	love	mber 2016	
				-	ctri		-	-						
,	May	. Marks: 70	(Elect	rical	anc	l Ele	ctro	nics	Eng	inee	ring)		Time: 3 Hour	· c
1	-	. Marks. 70 Answer all five un	its by ch	oosin	ig or	ne qu	Jestic	on fro	om e	each	unit (5 x 1		2
					0		*****	*			·			
	-)				ماله م		UNI			4 - D	0		_	71
1.	a) b)	What are general				•	• •		•	a D	C gen	erato	ſ.	7N
	b)	Differentiate betv	ween ap	windii	ng ar	iu wa	ore w OR		ıg.					7N
2.	a)	With a neat diad	ram evol	ain th		oetru	_		oturo	s of a		onora	itor. Explain each	
۷.	a)	part of it.	ram, expi			1511 U				5010	DC g			10N
	b)	Compare betwee	en simple:	x and	dupl	lex w	rindin	g.						4N
							UNI	T–II						
3.	a)	Compare betwee	en separa	tely e	excite	d an	d sel	f exc	ited [DC m	achine	es.		5N
	b)	What is commuta	ation? Dis	scuss	the r	neth	ods c	of imp	orovir	ng co	mmuta	ation	in DC machines.	9N
							OF	R						
4.	a)	List different type	es of DC 🤅	gener	ators	and	their	· app	licatio	ons.				7N
	b)	What is armature	e reaction	? Dis	cuss	its e	ffect.							7N
							UNI							
5.	a)	What is residual r	•				-					-	-	6N
	b)	What are the cau	uses of fa	ilure t	to ex	cite a			ed g	enera	ator? E	xplai	n.	8N
•	、				,		OF							
6.	a)	Why usually para are taken for its	•			-	jener	ators	is ui	nstab	le? WI	nat re	medial measures	6N
	b)			•			na in	nar	allel	have	linea	r cha	racteristics. One	010
	0)		•		•		•	•					d current of 30 A.	
					•								d current of 40 A.	
		Calculate the our current is 50 A a	-							ous v	oltage	wher	n (i) the total load	8M
		current is 50 A a	nu (n) ioa	uies	151011				' 					010
7.	a)	From fundament	als derive	e the t	torau	e ea			 a DC	moto	or.			7N
	b)				•	•						und to	be 1000rpm.the	
	- /	• •								•			s 0.8 . Calculate	
		induced emf and	armature	e curr	ent.									7N
							OF							
8.	a)	What is the need control of DC mc	-	d cont	rol of	am	otor?	Expl	ain th	ne Wa	ard-Le	onard	d system of speed	10N
	b)	Discuss various		ns of		moto	re							4N
	0)		applicatio	115 01	001		UNI	T_V						-10
9.	a)	Explain the Reta	rdation te	st to	estim	nate t			nal lo	osses	in a D)C ma	achine.	7N
-	b)	•											stance is 1 ohm.	
	,							•					of the machine is	
						-	-				f 250	ohms	s excited by 1 A.	71
		Estimate the efficiency	ciency of	ine m	achii	ne as	ora o OR	-	jener	ator.				7N
0.	2)	Explain about Fi	old'e toet	to doi	tormi	no th			ov of	2 501	ios m	otor		7N
υ.	a) b)	Explain about Fig							-				ing results for full	<i>i</i> IV
	5)	•								0			; Motor armature	
		current: 380 A;	Field curr	ents:	5 A	and	4.2	A. D	raw	the c	ircuit d	diagra	am and mark the	
			•		resist	ance	e of	each	n ma	chine	e is O	.02 (ohms, determine	71
		efficiency of eacl	h machine	э.										7N

							-					-			
Hall Ticke	t Number :												ſ		
Code: 4G	233											-		R -	14
II B.Tech. I Semester Supplementary Examinations November 2016											6				
Electrical Circuits-I															
	(Electrical & Electronics Engineering)														
Max. Ma	rks: 70								•		0,		Ti	ime: 3	Hours
Answer al	l five units b	v ch	noosi	ina d	one	aue	stior	n fror	n ea	hod	unit	(5 x	14 =	70 Mc	arks)
		/				•	****					(,
					U	NIT-	-I								
	_											-			
1. a)	State and ex	kplair	n Kiro	choff	's lav	vs wi	th ex	amp	les a	nd lii	mitat	ions			7M
b)	A heater ele	emen	t tak	es 8	MW	/ pov	ver v	vhen	con	necte	ed to	the p	powe	er main	S.
,	This eleme					•									
	Determine t								•						
	2010111101	.e pe		00110		G 111			0.00			pt	001		
							OR	K .							

- 2. a) Prove that internal resistances of voltage source and current source are same during transformation
 - b) Find the power dissipated in the resistor R in the ladder network shown in the figure1.

3. a) Explain the significance of operator-j in alternating circuits. 5M

- b) A series circuit having pure resistance of 40 ,pure inductance of 50mH and a capacitor is connected across a 400V,50Hz supply. This series combination circuit draws 10A.Calculate
 - (i) Power factor of the circuit.
 - (ii) Capacitance in µF

OR

- 4. a) Derive and expression for resonant frequency, band width of a series RLC circuit.
 - b) A series RLC series circuit has R=1000 $,L=100mH,C=10 \mu F$. If a voltage of 100V is applied across the series combination the determine
 - (i) Resonant frequency
 - (ii) Q-factor
 - (iii) Half power frequencies

7M

5M

9M

9M

7M

		UNIT–III	
5.	a)	State and explain Tellegen's Theorem.	ЗM
	b)	A bridge network formed by 4 arms is as follows. AB=2 ,BC=3 ,CD=4 ,DA=5 .A 6 resistance is connected between B and D.A battery source of 9V is connected with internal resistance of 1 between A and C such that A is positive and C is negative. Calculate current through 6 resistance by (i) Norton's Theorem	1114
		(ii) Thevenin's Theorem	11M
_		OR	
6.	a)	State and explain Compensation Theorem.	ЗM
	b)	 State and prove maximum power transfer theorem for a passive network connected to an active network consisting of current and voltage sources and linear bilateral elements, when the passive network load consists of (i) A variable resistance only (ii) A variable resistance and a variable reactance What is the transmission efficiency in case (ii) 	11M
		UNIT-IV	
7.	a)	Derive Impedance parameters of a two port network.	5M
	b)	 Determine the hybrid parameters with the following data. (i) With the output terminals shorted V₁=25V,I₁=1A,I₂=2A (ii) With the output terminals opened V₁=10V,V₂=50V,I₂=2A 	9M
		OR	
8.	a)	Derive Admittance parameters of a two port network.	5M
	b)	Prove that hybrid parameters will not exist for a two port network when $Z_{22}=0$.	9M
		UNIT-V	
9.	a)	What is the analogy between electric and magnetic circuits?	5M
	b)	A steel ring of 180 cm mean diameter has a cross sectional area of 250mm ² .Flux developed in the ring is 250µWb when a 4000 turns coil carries certain current.	
		Calculate (i) MMF required (ii) Reluctance (iii) Current in the coil. Assume relative permeability of steel is 1100. OR	9M
10.	a)	State and explain the principle of duality and explain the graphical method to	7M
	h)	draw dual network? What is complete incidence matrix? How is reduced incidence matrix	

b) What is complete incidence matrix? How is reduced incidence matrix 7M obtained from it? Explain with suitable example.

	ł	Hall Ticket Number :	
	Co	ode: 4G234	
		II B.Tech. I Semester Supplementary Examinations November 2016	
		Electromagnetic Fields	
	\sim	(Electrical and Electronics Engineering) Nax. Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
1	a)	UNIT–I State and derive Columb's law of force between any two point charges?	7M
1.	a) b)	A 2mc positive charge is located in vacuum at P_1 (3,-2,-4) and 5µc negative charge at	7 101
	0)	$P_2(1,-4,2)$.	
		(a) Find the vector force on the negative charge.	
		(b) What is the magnitude of the force on the charge at P_1 ?	7M
2.	a)	OR Define potential and potential difference?	7M
	b)		
	,	Given thotential c flux density different ² ? We space. (a) Find $\frac{e}{E} \operatorname{at } r = 2$, $=25^{\circ}$, $= 50^{\circ}$.	
		(b) Find the total charge within the sphere r =3?	7M
0	-)	UNIT-II	
3.	a) b)	What is dipole? Derive the expression for potential due to a dipole?	7M
	b)	A dipole of moment ve the expression cated at origin in free space i) Find E at P (r=4, $\stackrel{P = 6az nC/m is low}{=20^{\circ}, =0^{\circ}}$?	7M
4	-)	OR	
4.		Derive the expression for capacitance between co-axial cylinders?	7M 7M
	b)	Explain the continuity equation and point form of continuity equation?	7M
5.	a)	State and explain Biot –Savarts law?	7M
	b)	Obtain an expression for the magnetic field intensity due to infinitely long current carrying	
		conductor?	7M
0	-)	OR Otata and any lain Anna and a simultation of	
6.	a) b)	State and explain Ampere's circuital law? A circular loop leasted on $x^2 + x^2 = 0$ corrige a current of 120. Determine H at (0, 0, 6) and (0, 0)	7M
	b)	A circular loop located on $x^2 + y^2 = 9$ carries a current of 12A. Determine H at (0, 0, 6) and (0, 0, -6). Take the direction of current in anti-clockwise direction?	7M
		UNIT-IV	
7.	a)	Derive Lorentz force equation?	7M
	b)	An infinite filamentary conductor on the Z-axis carries a current of 2A in the Find the magnitude of the force on 1 inch length of the conductor in the field	
		a) $\bar{B} = 0.1 \hat{h}_x - 0.2 a_z \text{ wb/m}^2 \text{ b}$) $\bar{B} = 0.3 \hat{h}_x - 0.4 a_y \text{ wb/m}^2$?	7M
8.	a)	OR State and explain the Magnetic boundary conditions?	7M
0.	a) b)	Calculate the inductance of a solenoid 8cm in length, 2cm in radius having μ r = 100 and carrying	7 101
	0)	800 turns of wire?	7M
9.	a)	UNIT–V Explain the concept of displacement current?	7M
•	b)	Distinguish clearly the dynamically induced emf and statically induced emf. Explain with neat sketches?	7M
		OR	
10.		Write the Maxwell's equations for harmonically varying fields?	14M
