II B.Tech. I Semester Supplementary Examinations November 2016 Environmental Science (Common to ECE \& IT)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are different disciplines involved with environment. Explain?
b) Describe the importance of environmental studies.

OR

2. a) Describe the consequences of over-exploitation of natural resources.
b) What is pollution? Illustrate the different types of pollution briefly.

UNIT-II

3. a) Summarize the effects of dams on forest and tribal people.
b) Distinguish between traditional agriculture and modern agriculture.

OR

4. a) How land degradation occurs. Mention few remedial measures to prevent land degradation.
b) Outline the role of an individual in the conservation of natural resources.

UNIT-III

5. a) Describe the energy flow in an ecosystem with help of a flow chart.
b) Write notes on conservation of biodiversity.

OR
6. a) What are the characteristic features of forest ecosystem?
b) What are hot spots? Write notes on the hot spots of India.

UNIT-IV

7. a) Explain the effects caused by air pollution and how air pollution will be prevented.
b) Write short notes on (a) Noise pollution and (b) Thermal pollution

OR

8. a) Describe the soil pollution and what are the consequences with respect to agriculture?
b) What are the causes for solid waste production and mention few control measures.

UNIT-V

9. a) Explain any three best practices for rain water harvesting.
b) What are the preventive measures to be taken for HIV/AIDS?

OR

10. a) What is global warming? Propose the best practices to prevent the global warming.
b) Write notes on family welfare program.

Code: 4GC32

II B.Tech. I Semester Supplementary Examinations November 2016

 Engineering Mathematics

 Engineering Mathematics}
(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Show that the Regula-Falsi method has super linear convergence.
b) Employ Taylor's method to obtain appropriate value of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 x+3 e^{x}, y(0)=0$. Compare the numerical solution obtained with the exact solution.

OR
2. a) Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.
b) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ to determine $y(0.1)$ correct to four decimal places.

UNIT-II

3. a) From the following table, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation formula.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

b) Find $f^{\prime}(7.5)$ from the following table:

x	7.47	7.48	7.49	7.50	7.51	7.52	7.53
$f(x)$	0.193	0.195	0.198	0.201	0.203	0.206	0.208

4. a) One entry in the following table is incorrect and y is a cubic polynomial in x. Use the difference table to locate and correct the error.

x	0	1	2	3	4	5	6	7
y	25	21	18	18	27	45	76	123

b) Velocity V of a particle at distances from a point m its linear path is given by the following table. Estimate the time taken by the particle to travels the distance of 20 meters.

S(m)	0	2.5	5.0	7.5	10.0	12.5	15	17.5	20
$\mathrm{V}(\mathrm{m} / \mathrm{sec})$	16	19	21	22	20	17	3	11	9
				UNIT-III					

5. a) The pressure and volume of a gas are related by the equation $P V^{\gamma}=k, \gamma$ and k being constants. Fit this equation to the following set of observations

$P\left(\mathrm{~kg} / \mathrm{cm}^{2}\right)$	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$.

OR

6. a) Using the method of separation of variables, solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$ subject to the condition $u=0$ and $\frac{\partial u}{\partial y}=1+e^{-3 y}$, when $x=0$ for all values of y.
b) Obtain the least square fit of the form $f(t)=a e^{-3 t}+b e^{-2 t}$ for the following data

t	0.1	0.2	0.3	0.4
$f(t)$	0.26	0.58	0.44	0.35

7. a) Obtain a half range cosine series for $f(x)=\left\{\begin{array}{ll}k x, & 0 \leq x \leq l / 2 \\ k(l-x), & l / 2 \leq x \leq l\end{array}\right.$ UNIT-IV Deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \cdots \cdots \infty$.
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2}, & |x| \leq 1 \\ 0, & |x| \geq 1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos x / 2 d x$

OR

8. If $f(x)=\left\{\begin{array}{ll}0, & -\pi \leq x \leq 0 \\ \sin x, & 0 \leq x \leq \pi\end{array}\right.$, Prove that $f(x)=\frac{1}{\pi}+\frac{\sin x}{2}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}$. Hence show that $\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\cdots \cdots \infty=\frac{1}{4}(\pi-2)$

UNIT-V

9. a) Let A be a $m \times n$ matrix, then prove that $\rho(A)=\rho\left(A^{T}\right)$.
b) Solve the system of equations: $x_{1}-x_{2}+x_{3}+x_{4}=2 ; x_{1}+x_{2}-x_{3}+x_{4}=-4 ; x_{1}+x_{2}+x_{3}-x_{4}=4$; $x_{1}+x_{2}+x_{3}+x_{4}=0$.

OR
10. a) Determine the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$
b) State and prove the Cayley Hamilton theorem.

6M
\square

Code: 4G235

II B.Tech. I Semester Supplementary Examinations November 2016
 Electrical Circuit Theory
 (Electronics and Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and Explain Ohm's law and list out the limitations.
b) Five bulbs are connected in parallel across 110 V .each bulb is rated at 60 W . How much current flows through each bulb, and what is the total current.

OR
2. a) Explain about source transformation techniques.
b) Three resistances of equal value are available. Find
i. The total equivalent conductance and total equivalent resistance ratio.
ii. The ratios of power drawn by each configuration in each element. Considering that the supply voltage is same when the configuration is in series and in parallel.

UNIT-II

3. a) Obtain the fundamental sinusoidal response of a series RL circuit.
b) An r.m.s voltage in a three phase star connected circuit is given by $231 \mathrm{~V}(\mathrm{Ph}-\mathrm{N})$. Write the instantaneous voltage expression. If the current in each phase lag the corresponding phase voltage by 30°, what are the expressions of instantaneous currents?

OR

4. a) Explain the importance of sinusoidal waveforms and list out the advantages of AC supply.
b) Define the following terms with respect to fundamental sinusoidal A.C quantity.
i) Average value
ii) RMS value
iii) Form factor
iv) Peak factor

UNIT-III

5. a) Derive the resonant frequency of parallel combination of series RC and RL circuits.
b) The Q factor of a RLC circuit is 5 at its resonance frequency of 1 kHz . Assuming the power dissipation of 250 W when the current drawn is 1 A , find the circuit parameters and Band Width of the circuit.

OR

6. a) A steel ring of 25 cm mean diameter and of circular section of 3 cm in diameter has an air gap of 1.5 mm length. It is wound uniformly with 700 turns of wire carrying a current of 2A. Calculate.
i. Magnetomotiveforce .
ii. Fluxdensity
iii. magneticflux and Relative permeability of steel ring.
b) Explain about series connection of Magnetic coupled coils

UNIT-IV

7. A balanced delta connected load is supplied from a symmetrical, 3 -phase, 400 V , 50 Hz supply system. The current in each phase is 20A and lags behind its phase voltage by an angle 40° Calculate. The line current, Total power, draw the phasor diagram showing the voltages and currents in the lines and the phases. and also calculate the wattmeter readings if two watt meters are used.

OR

8. a) Derive the relation between line and phase quantities in a three phase balanced star connection.
b) Three identical impedances of $(3+j 4) \Omega$ are connected in delta. Find an equivalent star network such that the line current is the same when connected to the same supply

UNIT-V

9. a) State and prove maximum power transfer theorem and list out its applications.
b) Using Norton's theorem find voltage V2 in the circuit shown below Fig.9.b such that current through $(4+j 3)$ impedance is zero.

Fig.9.b

OR

10 a) State and Explain compensation theorem with a suitable Example
b) For the circuit shown in Fig.10b, If the resistance of 6Ω branch is reduced to 5Ω, Determine the compensation source and verify the results.

Fig.10.b

Code: 4G331
II B.Tech. I Semester Supplementary Examinations November 2016
Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

UNIT-I

1. a) In Common drain amplifier the values of $R_{G}=1 \mathrm{M}, R S=2.25 \mathrm{~K}, g_{m}=2.28 \mathrm{~mA} / \mathrm{V}$, $r_{d}=40 \mathrm{~K}$. Find the values of Z_{i}, Z_{o}, and A_{v}.
b) Analyze the common drain amplifier with neat diagram

OR

2. a) Explain the different coupling schemes in Multistage amplifier

8M
b) In Multistage RC Coupled amplifier the circuit parameters are $\mathrm{R}_{\mathrm{s}}=1 \mathrm{~K}, \mathrm{R}_{\mathrm{C} 1}=15 \mathrm{~K}$, $\mathrm{Re}_{2}=100$, $\mathrm{Rc}_{2}=4 \mathrm{~K}, \mathrm{Re}_{2}=330$ with baising resistances of $1^{\text {st }}$ stage $\mathrm{R}_{1}=200 \mathrm{~K}$, $R_{2}=20 \mathrm{~K}$ and biasing resistances of $2^{\text {nd }}$ stage are $R_{3}=47 \mathrm{~K}, R_{4}=4.7 \mathrm{~K}$. Find A_{l}, A_{v}, R_{i} and $A_{v s}$ with h-parameters of $h_{i e}=1.1 \mathrm{~K}, h_{f e}=50, h_{r e}=2.5 \times 10^{-14}$ and $h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$.

UNIT-II

3. a) Derive the expression for the CE current gain $\left(A_{1}\right)$ with resistive load at high frequencies.
b) Discuss the gain bandwidth product

OR

4. a) Draw the small-signal equivalent circuit for an emitter follower stage at high frequencies and obtain the voltage gain
b) Give the significance of two capacitors in hybrid π-Model. 4M

UNIT-III

5. a) Draw the practical circuit of the Current Series Feedback Amplifier and describe the concept involved in such an amplifier?
b) An RC Coupled amplifier has a Voltage gain $\left(A_{V}\right)$ of 1000 , $f_{L}=50 \mathrm{~Hz}, f_{H}=200 \mathrm{KHz}$. Find the amplifier gain, $f_{L F}, f_{H F}$ when a negative feedback is introduced with feedback ratio of 0.01

OR

6. a) Explain the General Characteristics of negative feedback amplifier. 8M
b) Explain various topologies of feedback amplifiers. 6M

UNIT-IV
7. a) Derive the frequency of oscillation for Colpitts oscillator using BJT? 10M
b) What are the factors which causes the frequency stability of an oscillator? 4M

OR
8. a) State and explain the Barkhausan Conditions. 4M
b) Draw the circuit diagram of a RC Phase Shift Oscillator using BJT. Derive the
expression for frequency of oscillations.

UNIT-V

9. a) Draw the circuit diagram of Class B Complementary Symmetry Push-Pull amplifier, explain its working and derive its efficiency.
b) Explain about Cross-Over distortion in Class B Complementary-Symmetry amplifier. 4M

OR
10. a) Draw the circuit diagram of single tuned inductive coupled amplifier and explain its operation. 10M
b) What is the importance of Q-factor in tuned amplifier? 4M

II B.Tech. I Semester Supplementary Examinations November 2016

Pulse and Digital Circuits

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the response of RC low pass circuit for exponential input signal.
b) Prove that for any periodic input wave form the average level of the steady state output signal form the RC high pass circuits is always Zero.

OR

2. a) Draw the response of high pass circuit for square wave and derive the expression for percentage tilt.
b) A symmetrical square wave whose peak-to-peak amplitude is 2 V and whose average value is zero is applied to an RC integrating circuit. The time constant is half the period of the square wave. Find the peak-to-peak value of the output amplitude.

UNIT-II

3. a) Explain with relevant diagram the various transistor switching times.
b) Compare positive peak and negative peak clamping.

OR

4. a) Explain the terms pertaining to transistor switching characteristics.
i. Rise time. ii. Delay time.
iii. Turn-on time. iv. Storage time.
v. Fall time. vi. Turn-off time.
b) Determine V_{0} for the network shown in figure for the given wave form? Assume ideal diodes

5. a) Explain about the transistor Miller time-base generator.
b) Compare miller and boot strap circuits.
c) Derive the expression for slope error of bootstrap circuit.

OR

6. a) With the help of neat waveforms explain Sine Wave frequency division with a sweep circuit.
b) Compare sine wave synchronization with pulse synchronization
UNIT-IV
7. a) Draw the circuit diagram for Schmitt trigger and explain its operation. What are the applications of the above circuit? Derive the expressions for UTP and LTP. 7M
b) Design an astable multi for an $0 / p$ amplitude of 15 V and square wave frequency of 500 Hz . Assume $\mathrm{h}_{\text {FEmin }}=50, \mathrm{I}_{\mathrm{Csat}}=5 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEsat}}=0$. 7M
OR
8. a) Draw and explain about the response of Schmitt circuit for the for loop gain <1. 7M
b) Draw and explain the collector coupled astable multivibrator 7M
UNIT-V
9. a) Explain the working of a bidirectional gate using transistors. 7M
b) Draw a TTL NAND gate and explain its operation. 7M
OR
10. a) Draw the circuit diagram of negative logic NOR gate and explain its operation. 7M
b) Discuss the operation of the four-diode bi-directional sampling gate. 7M

Hall Ticket Number :										

Signals and systems

II B.Tech. I Semester Supplementary Examinations November 2016
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Classify different types of signals.
b) Find the Fourier series coefficients for the continuous time periodic signal

$$
\begin{aligned}
x(t) & =1.5 \text { for } 0 \leq t<1 \\
& =-1.5 \text { for } 1 \leq t<2 \text { with the fundamental frequency } \omega_{0}=\pi .
\end{aligned}
$$

OR
2. a) Write conditions for the existence of Fourier series.
b) Distinguish trigonometric Fourier series and complex Fourier series.

UNIT-II

3. a) Determine the Fourier Transform of the following signal.

b) State and verify time shifting and time scaling property of Fourier Transforms
4. a) Find the Fourier transform of a Rectangular pulse and Signum function.
b) Find Hilbert transform of a function $f(t)=\sin \omega_{0} t+\cos \omega_{0} t$

UNIT-III

5. a) A system has an impulse response $h(t)=2 e^{-2 t} u(t)$. Find the output signal $\mathrm{y}(\mathrm{t})$ if the input is $x(t)=u(t)-u(t-1)$.
b) Draw ideal characteristics of filters.

OR

6. a) Determine the linearity and time invariance of the following systems
i) $y(t)=t^{2} u(t)$
ii) $y(n)=n x(n)$
b) Obtain transfer function of the following network with $R=1$ and $C=1 F$.

UNIT-IV

7. a) State sampling theorem and find the nyquist rate for the following signals.
i. $8 \sin 50 \pi t$
ii. $4 \sin 30 \pi t+3 \cos 70 \pi t$ 8M
b) Determine autocorrelation of Asin ω_{0}, 6M OR
8. a) State and prove the Parseval's relation for continuous time signals.
b) Verify convolution property in time domain using Fourier transform

UNIT-V

9. a) A signal has Laplace transform $X(s)=\frac{S+2}{S^{2}+4 s+5}$. Find Laplace transform $\mathrm{Y}(\mathrm{s})$ of the following signals

$$
\begin{array}{ll}
\text { i. } & y_{1}(t)=t x(t) \\
\text { ii. } & y_{2}(t)=e^{-t} x(t)
\end{array}
$$

b) Determine Laplace Transform of a standard signals unit impulse and unit step. 4M

OR
10. a) Using Z transform, compute response of the following system $y(n)=0.7 y(n-1)-0.12 y(n-2)+x(n-1)+x(n-2)$ to the input $x(n)=n u(n)$. Is the system stable?
b) Find the z transform of $2^{n} u(n)$ and $-(1 / 2)^{n} u(n-1) \quad 5 M$

