	Hal	I Ticket Number :	1
L	Coc	le: 1GC43]
		II B.Tech. II Semester Supplementary Examinations December 2017	
		Environmental Science (Common to CE, ME and CSE)	
	Мс	ax. Marks: 70 Time: 3 Hours	
		Answer any five questions	
		All Questions carry equal marks (14 Marks each)	
1.	a)	Why should we care about sustainability? Why it is important to study environmental	
		science?	7M
	b)	Name two Institutions actively involved in environmental activities. Discuss the multidisciplinary nature of environmental science.	7M
2.	a)	Mention few direct uses of forest resources. Write short notes on 'Joint forest management'.	7M
	b)	Discuss in detail the problems associated with 'Dam'.	7M
	5)	Discuss in detail the problems associated with Dam.	7 101
3.	a)	Prepare a note on world food problem. What is Eutrophication?	7M
	b)	What is open pit mining? Discuss the role of an individual in the conservation of Natural resources.	7M
4	a)	Discuss the effect of air pollution on living organism. What is 'Green house effect'?	8M
	b)	Describe how an individual can contribute towards a better quality of our environment and human life.	6M
5.	a)	Describe the structure and functions of a forest ecosystem.	7M
	b)	What are ecological pyramids? Discuss energy flow in an ecosystem with appropriate diagram.	7M
6.	a)	Explain 'Ex-situ' and 'In-situ' conservation of biodiversity.	7M
	b)	Describe India as a megadiversity nation.	7M
7.	a)	In your opinion what are the major limitations to successful implementation of our environmental legislations? Elaborate.	7M
	b)	Prepare a note on urban problems related to energy.	7M
8.	a)	List out various causes of rapid population growth in India. Mention few measures to control the rapid population growth in India.	7M
	b)	Explain the role of 'Information Technology' in protection of our environment. List out few major precautions to avoid AIDS.	7M

T

Т

Т

Т

Т

Т

٦

Hall Ti	cket Number :												г				
Code:	1G642	1	<u> </u>	1		1		1]	1	_ <u>_</u>			R-	11 /	R-1	3
	3.Tech. II Sem												се	mb	er 20)17	
		Hyd	rau			-		i ulic ering		ich	iner	У					
Max. I	Marks: 70			•		-		-						Ti	ime: 3	3 Но	Urs
	Al	l Que	estio			equa		ques [.] Irks (arks	eac	: h)					
1. a)	Write any fou forming along						e th	e thi	ickne	ess (of th	e l	οοι	Inda	ry lay	er	2M
b)	Write about la	minaı	r sub	layer													2M
c)	Calculate the longitudinally i 0.9 stokes, flor of the boundar	n a s wing	trear with	n of o a fre	oil of e str	relat eam	ive c velo	densi ocity (ty 0.9 of 6 r	925 a m/s.	and k Also	kine	ema	atic v	/iscosi	ity ss	10M
2. a)	Describe the v											ายส	at d	iagra	am.		4M
b)	Write notes c critical flow.		•			-					-			-		nd	6M
c)	A trapezoidal bottom slope o channel at a d	of the	e cha	Innel	is 0.	0036	5. If a	a disc	charg	je of	15 n	n ³ /s	s pa	asse	s in th		4M
3. a)	Give complete flow type, dept			•					•			l s	lop	es w	ith the	eir	8M
b)	Differentiate R	apidl	y Va	ried l	Flow	and	Grad	dually	/ Var	ied F	low	in (Эрe	en cł	nanne	I.	2M
c)	A stationary hy sequent depth discharge per	n bei	ing	equa	l to	0.2n	n an	nd 1.	-								4M
4. a)	Determine the direction of the		e ex	erted	by a	a jet	of w	vater	on a	sta	tiona	ry	flat	plat	e in tł	ne	4M
b)	Write two appl	icatio	ons o	f rad	ial flo	ow tu	rbine	es.									2M
c)	A 75mm diame of which is incl plate when the of 15 m/s in th	lined e plat	at 48 e is	5º to static	the a onary	axis c v and	of the whe	e jet. en the	Find e pla	the i te is	norm mov	al p	ore	ssure	e on tł	ne	8M
5. a)	Give the list of	work	king	propo	ortior	ns of	Pelto	on wł	neel.								5M
b)	Write about dr	aft tu	be ir	n turb	ines	and	their	impo	ortan	ce w	ith n	eat	dia	agrar	m.		4M
c)	An inward flow 0.6m, respecti speed rotation Calculate the of the runner (vely. of 2 (i) ab	The 50 rp solu	brea om, th te ve	adth ne re	at in al ve	let is locity	s 0.28 y at e	5m a entrai	nd a nce i	at out s 3.5	tlet 5 m	is /s a	0.35 and i	im. At s radia	a al.	5M

Г

Code: 1G642

6.	a)	Define Governor. Write about its operation in reaction turbine using a neat sketch.	6M
	b)	Define Cavitation. Describe how this is being controlled in turbines.	3M
	c)	A turbine develops 8000 kW when running at 100 rpm. The head on the turbine is 30m. If the head is reduced to 18m, determine the speed and power developed by the turbine.	5M
7.	a)	Describe the performance of pumps in series and pumps in parallel with neat sketch.	5M
	b)	Describe the classification of losses in centrifugal pumps.	5M
	c)	A centrifugal pump discharges 0.2 m ³ /s of water at a head of 25m when running at a speed of 1400 rpm. The manometric efficiency is 80%. If the impeller has an outer diameter of 30cm and width of 5cm, determine the vane	
		angle at the outlet.	4M
8.	a)	Describe the classification of hydro-power plants based on the storage being provided.	5M
	b)	Define and differentiate the terms load factor, utilization factor and capacity factor.	5M
	c)	Using one method explain the procedure to estimate the hydropower potential of any plant.	4M

	1.	Answer any Five questions All Questions carry equal marks (14 Marks each)	
1.	a)	Find the mean, median, mode and standard deviation for the following distribution.	
		x 1 3 5 7 9 11 13 15 y 3 3 4 14 7 4 3 4	8M
	b)	y 3 3 4 14 7 4 3 4 Obtain the rank correlation coefficient for the following data.	em
	- /	x 68 64 75 50 64 80 75 40 55 64	
-		y 62 58 68 45 81 60 68 48 50 70	6M
2.	a)	Box A contains 5 red and 3 white marbles and box B contains 2 red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colours?	7M
	b)	A business man goes to hotels X, Y, Z, 20%, 50%, 30% of the time respectively. It is	
		known that 5%, 4%, 8% of the rooms in X, Y, Z hotels have faulty plumbings. What is the probability that business man's room having faulty plumbing is assigned to hotel Z?	7M
3.	a)	Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers. i.e., X (a, b) = max. (a, b). Find the probability distribution. X is a random variable with $X(S) = \{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution.	10M
	b)	If X is a continuous random variable with probability density function	10101
	~)		
		$f(x) = \begin{cases} x^2, \ 0 \le x \le 1\\ 0, \ else \ where \end{cases} \text{ If } P(a \le x \le 1) = \frac{19}{81}, \text{ find the value of 'a'.}$	4M
4.	a)	The mean of Binomial distribution is 3 and the variance is $\frac{9}{4}$.	
		Find (i) the value of n (ii) $P(X \ge 7)$ (iii) $P(1 \le X < 6)$	7M
	b)	If X is a poisson variate such that $3P(x=4) = \frac{1}{2}P(x=2) + P(x=0)$,	
		Find (i) the mean of x (ii) $P(x \le 2)$	7M
5.		 Samples of size 2 are taken from the population 3, 6, 9, 15, 27 with replacement. Find a) The mean of the population b) The standard deviation of the population c) Mean of the sampling distribution of means d) The standard deviation of the sampling distribution of means. 	14M
6.	a)	What is the size of the smallest sample required to estimate an unknown proportion to with in a maximum error of 0.06 with at least 95% confidence.	7M
	b)	A random sample of 500 points on a heated plate resulted in an average temperature of 73.54 degrees Fahrenheit with a standard deviation of 2.79 degree Fahrenheit. Find a 99% confidence interval for the average temperature of the plate.	7M
7.		To compare two kinds of bumper guards, 6 of each kind were mounted on a car and then the car was run into a concrete wall. The following are the costs of repairs.	
		Guard 1107148123165102119Guard 2134115112151133129	
		Use the 0.01 level of significance to test whether the difference between two sample means is significant.	14M
8.		In an investigation on the machine performance, the following results are obtained.	
		No. of units inspected No. of defectives	
		Machine 1 375 17 Machine 2 450 22	
		Test whether there is any significant performance of two machines at $= 0.05$.	14M
		Page 1 o	f 1

Hall Ticket Number :	
----------------------	--

Code: 1GC42

Max. Marks: 70

II B.Tech. II Semester Supplementary Examinations December 2017

Probability & Statistics

(Common to CE, ME and IT)

R-11 / R-13

Time: 3 Hours

4

5

- 6
- 7

Hall Tic	:ket Number :														
	1G643	1		<u> </u>				1	<u> </u>]			R-1 1	I/R-13
	3.Tech. II Sen	nest	er S	upp	lem	ent	ary	Exa	min	atio	ns [Dec	emt	oer 20	17
								alys							
Ma	x. Marks: 70				(Civ	II Eng	ginee	ering)				Time	: 03 Ho	ours
				Ansv	ver d	any i	five	ques	stion	IS					
	All	Que	stior	ns co	arry e		al ma *****	arks	(14 /	Mark	(s eq	ach)		
1.	A fixed beam	of spa	an 1	4m c	arrie	s an	ecce	ntric	cloc	kwise	e cou	uple	of 25	KNm at	
	6m from left s	•••	rt A.	Calc	ulate	the	fixed	end	mon	nents	for	the b	beam	& draw	
	the BMD & SF	D.													14M
2.	A two span co	ntinu	2110	hear		C is t	fixed	at ∆	and	is co	ontin			R The	
۷.	span AB = 6.5														
	span AB carrie		•												
	Span BC is loa using Clayperc									-			-		14M
3.	A two span c						•								
	continuous ov 5mm. Span A			•				-						-	
	Analyze the	beam	ו by	Slo	be –	Def	flection	on m	netho	od &	dra			pending	
	moment diagra	am. 1	Fake	E = 3	2X10) ⁵ MP	'a & I	= 4>	۲10 ⁷	mm ⁴					14M
4.	A simply supp	ortec	l bea	am A	BC is	s con	ntinuc	ous o	ver t	two s	pans	s AE	8 & BC	C of 6m	
	and 5 m respe	ective	ely. 1	he s	pan	AB is	s car	rying	a u	dl of	2KN	l/m a	and th	ne span	
	BC is carrying draw the BMD											se th	ne bea	am and	14M
		α 0.	24	onig				butto			••				1 1101
5. a)	State and deri	ve Ca	astig	liano	's firs	st the	eoren	า.							7M
b)	Derive the exp	oress	ion f	or str	ain e	energ	y du	e to k	bend	ing.					7M
6.	A live load of	20 K	NI/m	into	ocity	and	6m	long	mov		n	oimr		oportod	
0.	girder of span				•			•				•	• •	•	
	shear force the	at ca	n oco	cur a	t a se	ectior	n 8m	from	the	left s	uppo	ort.			14M
7.	Draw the influ	ience	line	diad	gram	for	shea	r for	ce a	nd b	endir	na n	nomer	nt for a	
	section at 3m			-	-							-			

8. State and derive Castigliano's first theorem. Show how this theorem is helpful in the analysis of redundant frames.

Hence calculate the maximum bending moment and shear force at the section, due to uniformly distributed rolling load of length 8m and intensity 10KN/m run.

14M

14M

Hall Ticket Number :	
----------------------	--

Code: 1G641

Max. Marks: 70

R-11 / R-13

II B.Tech. II Semester Supplementary Examinations December 2017 Strength of Materials-II

(Civil Engineering)

Time: 3 Hours

7M

7M

7M

7M

8M

7M

Answer any **five** questions All Questions carry equal marks (**14 Marks each**)

- 1. a) Derive an expression for hoop stress induced in a thin spherical shell subjected to internal pressure.
 - b) A thin cylindrical shell 600 mm in diameter with wall thickness of 15 mm and 2.4 m length is subjected to an internal pressure of 4 N/ mm². Calculate the change in volume. Take E = 2 X 10⁵ N/ mm² and μ = 0.3.
- 2. A compound cylinder is formed by shrinking one cylinder on to another. The final dimensions are: Internal diameter = 15 cm, External diameter = 30 cm, and diameter at junction= 25cm. The shrinkage pressure is 10MPa. Calculate the shrinkage allowance. What is the minimum temperature to which the outer cylinder must be heated so that it can be slipped on? Take for material of outer cylinder = 0.6 X 10 ⁻⁵/ ⁰C. 14M
- 3. a) Derive Torsion formula stating the assumptions.
 - b) Compare the weights of a solid circular shaft and a hollow circular shaft of ID 3/4th of its OD; if the two shafts are required to transmit the same torque. Assume that the length and material of both the shafts are the same.

4 a) Define: (i) stiffness (ii) spring index (iii) Helix angle (iv) Solid length w.r.to helical springs.

b) A close coiled helical spring is to be designed such that the mean diameter of the coil is 12 times the wire diameter. The spring is to absorb 300 J of energy with an extension of 15 cm. The maximum shear stress set up in the spring is not to exceed 100 MPa. Determine:

(i) Mean diameter of coil (ii) Wire diameter (iii) Number of turns. 6M

- 5. a) Derive an expression for Euler's crippling load for a column with both ends fixed. 7M
 - b) Compare the crippling loads given by Rankine's and Euler's formulae for tubular strut 225 cm long having outer and inner diameters of 37.5 mm and 32.5 mm respectively and loaded through pin joints at both ends. Take yield stress = 315 MPa, E= 200 GPa and a = 1 / 7500.
- A chimney is 45 m high. Its external diameter tapers from 4 m at the base to 2 m at the top. The internal diameter at the base is 2.5 m. The horizontal wind pressure is 2 KPa. Self weight of the chimney is 2.5 MN. Determine the maximum and minimum stresses. 14M
- 7. Find the centroidal principal moments of inertia of a T-section 30 X 30 X 5 mm. 14M
- Draw the B.M. and Torsion diagrams for a semi-circular beam AB of radius 'R'. The cross-section of the material is circular with radius 'r'. It is loaded with a load at the mid-point C of the semi circle. The ends A and B are fixed.
 14M