Code: 5C6M	1.	ļ.	L		ļ.	J	R-15	
Hall Ticket Number :								_

II B.Tech. II Semester Supplementary Examinations December 2017

Building Planning and Drawing

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

PART-A

Answer any three units by choosing one question from each unit (3 x 14 = 42Marks)

UNIT-I

- a) What is meant by building bye-law? Explain the underlying principle and applicability of a bye-law.
 - b) Discuss the provisions and specifications for the following components of a building:
 - (i) Stairways
 - (ii) Lighting and Ventilation

OR

- 2. a) What are the provisions of bye-law for High rise development in Indian Context in Urban areas?
 - b) Define Floor Area Ratio. Discuss its importance with regard to the height of the building

UNIT-II

- 3. a) What are the functions of Habitable and non-habitable rooms?
 - b) Discuss the provisions for Parking Spaces in Commercial and residential buildings

OR

- 4. Differentiate the following:
 - (i) Hotel and Motel
 - (ii) Plumbing and Sanitary services
 - (iii) Auditorium and Foyer
 - (iv) Dispensary and Clinic

UNIT-III

- 5. a) Write a note on bar chart and net work diagram
 - b) Define dummy activity used in a network. Explain its purpose.

OR

Consider the following data for activities in a project. Draw the network and number the events

Activity	Immediate predecessor	t₀ (in Days
Α		5
В	А	4
С		7
D	B,C	3
E	В	4
F	D,E	2

Code: 5G644

PART-B

Answer any **one** question from the following units (1 x 28 = 28Marks)

UNIT-IV

7. Draw to a suitable scale a king post truss for a clear span of 6m showing all the details and dimensions.

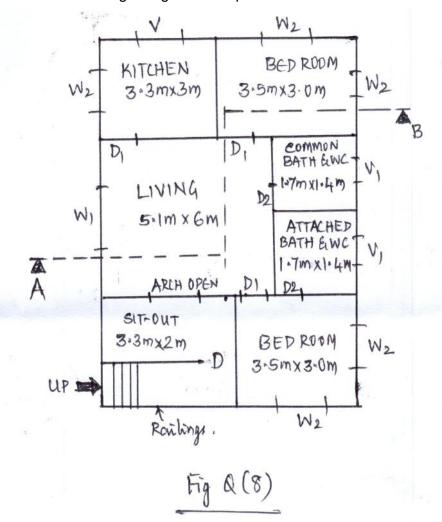
OR UNIT-V

8. The line plan of a residential building is as shown in Fig Q(8).

Specifications:

Foundation: 450m thick cc1:2:4 and 600 mm wide.

Basement: 300mm wide, SS masonry and 450mm above GL


Superstructure: All walls are 230mm thick BBM in CM1:6 with height above

floor level 3.00m

Roof: 125mm thick RCC slab with weathering coat

Parapet wall: 100mm thick with a height of 600mm above roof Flooring: 20 mm thick in CM 1:3 over PCC 1:3:6, 100mm thick

Doors, windows and ventilators: As per standard specifications for a residential building along with adequate sunshades on outer walls.

All dimensions of rooms are clear internal dimensions

Draw: (i) Detailed PLAN (ii) Section along AB

Hall Ticket Number :						
						1

Code: 5GC43

R-15

II B.Tech. II Semester Regular Examinations May 2017

Environmental Science

		(Common to CE, ME & CSE)	
Max.	Mar		Jrs
Ar	nswe	er all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *********	
		UNIT-I	
1.	a)	Illustrate the scope & Importance of environmental studies	7M
	b)	How does the declination of ecosystems occurs?	7M
		OR	
2.	a)	What is the scope and importance of environmental studies?	7M
	b)	Describe the multidisciplinary nature of environmental studies.	7M
		UNIT-II	
3.	a)	Write about the applications of alternative energy resources	7M
	b)	Write about the importance of natural resources	7M
		OR	
4.	a)	Distinguish between traditional agricultural and modern agricultural.	7M
	b)	Summarize the effects of dams on forest and tribal people.	7M
		UNIT-III	
5.	a)	Write short note on sustainable development with examples.	7M
	b)	Write short note on food chain and food web with examples.	7M
		OR	
6.	a)	What are the various threats leading to loss of biodiversity?	7M
	b)	Discuss the various strategies of in-situ conservation of biodiversity	7M
		UNIT-IV	
7.	a)	How does the biodiversity is maintained?	7M
	b)	What are the various methods of control to reduce thermal pollution?	7M
		OR	
8.	a)	Explain about causes of marine pollution.	7M
	b)	Explain about causes of noise pollution.	7M
		UNIT-V	
9.	a)	Explain about causes of air pollution.	7M
	b)	What are the salient provisions of Wild life Act?	7M
		OR	
10		Explain the value of environment education and the role of women and environment.	14M

Hall Ticket Number: R-15 Code: 5G642 II B.Tech. II Semester Supplementary Examinations December 2017 Hydraulics and Hydraulic Machinery (Civil Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I 1. a) Describe boundary layer separation with its disadvantage and mention any two methodologies to control them. 4M b) A 20 Km/h wind blows over a 6m flat plate. If the density and kinematic viscosity of air are 1.2 Kg/m³ and 1.5x10⁻⁵ m²/s respectively. Calculate the force per meter of the plate. Also determine the thickness of the boundary layer at the trailing edge. 10M OR 2. a) Define Magnus effect and derive equation. 4M b) Given that the velocity distributions in a laminar boundary layer due to flow over a flat plate is $\frac{u}{u} = \left[\frac{3}{2}\eta - \frac{1}{2}\eta^3\right]$ Where $\eta = \frac{y}{\delta}$ Calculate the displacement and momentum thicknesses in terms of the nominal boundary layer thickness 6. 10M UNIT-II 3. a) Classify the open channel flows using a flow chart and provide suitable example for each type of flow. 3M b) Describe the Specific Energy diagram of the open channel flow using all regular notations for various parameters. 3M c) It is required to convey 10 m³/s of water at a mean velocity of 1.25 m/s. Calculate the dimensions of the most efficient section of rectangular and triangular shapes. 4M d) In a flow through a rectangular channel for a certain discharge the Froude numbers corresponding to the two alternate depths are F1 and F2. Show that $(F2/F1)^{2/3} = \frac{2+F2^2}{2+F1^2}$ 4M OR 4. a) Give complete list of GVF profiles with their flow type, channel slope, depth condition and also draw their neat profiles. 10M b) In hydraulic jump occurring in a rectangular horizontal channel, the discharge per unit width is 2.5 m³/s/m and the depth before the jump is 0.25m. Estimate

(i) the sequent depth (ii) the energy loss.

Code: 5G642

UNIT-III

5. a) A jet of water having a velocity of 45 m/s impinges without a shock a series of vanes moving at 15 m/s, the direction of motion of the vanes being inclined at 20° to that of the jet. The relative velocity at outlet is 0.9 of that at inlet, and the absolute velocity of water at exit is to be normal to motion of the vanes. Find vane angles at entry and exit, work done per unit weight of water supplied by the jet, the hydraulic efficiency.
b) Determine the force exerted by a jet of water on a moving flat plate in the

10M

b) Determine the force exerted by a jet of water on a moving flat plate in the direction of the jet.

4M

OR

6. Consider the jet striking on an unsymmetrical moving curved vane tangentially at one of the tips and derive the expression for force exerted by the jet on the vane, work done and efficiency. Draw the velocity triangles at inlet and out let.

14M

UNIT-IV

7. a) Define Cavitation. Describe how this is being controlled in turbines.

4M

b) Classify different efficiencies used in hydropower turbines.

3M

c) A double jet 1.5m diameter impulse turbine installation is to develop 3000 KW at 400 rpm under a net head of 270m. If the overall efficiency is 0.90, determine the (i) diameter of jet (ii) speed ratio (iii) speed (take C_v =0.85).

7M

OR

8. a) Define Governor. Write about its operation in impulse turbine using a neat sketch.

7M

b) A Kaplan turbine develops 15000 kW power at a head of 30m. The diameter of the boss is 0.35 times the diameter of the runner. Assuming a speed ratio of 2, a flow a ratio of 0.65 and an overall efficiency of 90%, Calculate the (i) diameter of the runner (ii) rotational speed and (iii) specific speed.

7M

UNIT-V

9. a) Describe the assessment of the hydropower potential.

5M

b) Define NPSH

2M

c) A centrifugal pump has an impeller of 80cm diameter and it delivers 1.1 m³/s against head of 70m. The impeller runs at 1000 rpm and its width at outlet is 8cm. If the leakage loss is 4% of the discharge, external mechanical loss is 10kW and hydraulic efficiency is 82%, Calculate the blade angle at outlet and overall efficiency.

7M

OR

10. a) Describe the main and operating characteristics of centrifugal pump

9M

b) Define and differentiate the terms load factor, utilization factor and capacity factor.

5M

-	Hall Ticket Number: R-15	
Со	ode: 5GC42	
	II B.Tech. II Semester Supplementary Examinations December 2017 Probability and Statistics (Common to CE, ME & IT)	
Μ	ax. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************	
	UNIT-I	
a)	Box A contains nine cards numbered 1 to 9 and box B contains five cards numbered 1 to 5. A box is chosen at random and a card is drawn, if the card shows an even number another card is drawn from the same box, if the card shows an odd number, a card is drawn from the other box. (i) What is the probability that the both cards show an even number? (ii) If both cards show even number, what is the probability that they come from box A.	71.4
b)	(iii) What is the probability that both cards are odd?i. If A and B are independent events. Then prove that A^c and B^c are also independent events.	7M
b)	ii. If A and B are independent events. Then show that A and B° are also independent events.	7M
	OR	
a)	If X is a continuous random variable and $y=ax+b$, prove that $E(y) = a E(X) + b$ and $V(y) = a^2 V(x)$	7M
b)	A continuous random variable is given by $f(x) = \begin{cases} k(1-x^2), 0 < x < 1 \\ 0, otherwise \end{cases}$.	
	Find i) k, ii) mean iii) variance.	7M
	UNIT-II	
a)	Explain the properties and importance of Normal Distribution.	7M
b)	If a poisson distribution is such that $P(x=1)$. $\frac{rm\epsilon}{\frac{3}{2}} = P(x=3)$. Find	
	(i) $P(x 1)$ (ii) $P(x 3)$ (iii) $P(2 x 5)$	7M
	OR	
	In a Normal distribution 31% of the items are under 45 and 8% are 64. Find the mean and standard deviation of the distribution.	14M
	UNIT-III	
	A population consists of 5, 10, 14, 18, 13, 24. Consider all possible samples of size 2 which can be drawn without replacement from the population. Find	
	 i. The mean of the population ii. The standard deviation of the population iii. The mean of the sampling distribution of means 	
	The standard deviation of sampling distributions of means.	14M
	OR	
a)	Find 95% confidence limits for the mean of a normality distributed population from which the following sample was taken 15,17,10,18,16,9,7,11,13,14.	7M
b)	What is the maximum error one can expect to make with probability 0.90 when using the mean of a random sample of size n=64 to estimate the mean of population with variance 2.56.	7M

1.

2.

3.

4.

5.

6.

Code: 5GC42

UNIT-IV

7. a) A sample of 64 students have a mean weight of 70 kgs. Can this be regarded as a sample from a population with mean weight 56 kgs and standard deviation 25 kgs.

7M

b) Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same, at 5% level.

7M

OR

8. a) Experience had shown that 20% of a manufactured product is of the top quality. In one day, production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05level.

7M

b) In a study on the influence of habitation, the intelligent quotients (IQs) of 16 students from urban area was found to have a mean of 107 and standard deviation of 10, while the IQs of 14 students from a rural area showed a mean of 112 and standard deviation of 8. Determine whether the IQs differ significantly at 0.05 level.

7M

UNIT-V

9. From the following data find whether there is any significant liking in the habit of taking soft drinks among the categories of the employees.

Soft drinks	Clerks	Teachers	Officers
Pepsi	10	25	65
Thumsup	15	30	65
Fanta	50	60	30

14M

OR

10. Fit a poisson distribution and test the goodness of it for the following data.

Х	0	1	2	3	4
f(x)	109	65	22	3	1

Hall Ticket Number : Code: 5G643

II B.Tech. II Semester Supplementary Examinations December 2017

Structural Analysis-I


(Civil Engineering)

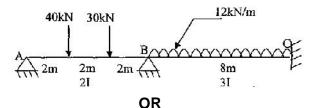
Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. For the fixed beam shown below, the support A rotates by 0.002 radian clockwise. Find the fixed end moment. Take EI=10¹³ N-mm².

14M

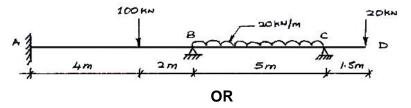

R-15

 A fixed beam AB of span 6m span carries a concentrated load of 30kN at a distance of 3.5m from the fixed end A. Determine the values of fixing moments at supports A and B and also the deflection of the beam under the load. Assume the flexural rigidity of the beam as 1.3X1010 kN-mm2.

14M

UNIT-II

3. Determine the support moments for the continuous beam shown below


14M

4. A two span continuous beam ABC of uniform section with span AB as 8m and BC as 6m is fixed at A and simply supported at B and C. All three supports are at same level. The span AB carries a uniformly load of 12kN/m and span BC carries another uniformly distributed load of 15 kN/m. Find the moments and reactions at all the supports and draw the bending moment and shear force diagrams using Clapeyorn's theorem of three moments.

14M

UNIT-III

Analyze continuous beam ABCD by slope deflection method and then draw bending moment diagram. Take EI constant.

14M

6. Analyze the beam by moment distribution method. The beam at support B and C sinks by 2 mm and 7 mm. Take E = 200 kN/mm2 and I=2.5×107 mm4

Code :5G643

UNIT-IV

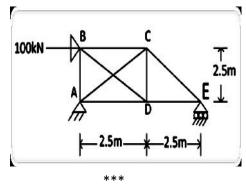
7. A load of 33kN crosses a simply supported bridge of 25m span. Find the values of maximum shear force and bending moment at a section 8m and 10m from the left end support. Also calculate the absolute maximum bending moment in the bridge.

14M

OR

8. State and derive Castiglione's first theorem. A cantilever beam of uniform cross-section is loaded by a concentrated load of 20 kN at its free end. The span of the cantilever is 4m. Using Castiglione's first theorem, determine the deflection under the load. The cross-section of the cantilever is 200×250mm. Assume E=210GNm.

14M


UNIT-V

9. A load of 75kN crosses a simply supported bridge of 26m span. Find the values of positive shear force, negative shear force and the bending moment at a section 12m from the left end. Using the influence lines and the maximum shear forces and find bending moment at section 15 m from the left end support.

14M

OR

10. Determine the forces in all the members of the redundant pin jointed truss shown in figure below. Assume cross-sectional area of each member as 1500 mm².

Hall	Tio	cket Number														
od	e: :	5G641		1	(<u>.l</u> .		1			1				R-15	
	П	B.Tech. II S	emes	ster	-	enç	gth (of M	ry Exc Nate i neerir	rials		ons	Dec	emb	er 201	7
Μ		. Marks: 70 .nswer all five	units b	y ch	noosi		ne c		tion fr		each	unit	(5 x 1		me: 3 l O Marks	
						U	NIT-	-I								
•	a)	A boiler shel N/mm². If the 40% respecti diameter is 2	e efficie vely, de	ency	of th	e lor	ngitud	dinal	joints	and	l circu	ımfere	ential	joints	are 80%	% and
	b)	A thin cylind internal press the shell. E =	sure of	3.5	V/mn	n². D	eterr	nine	the cl	nang			•		•	
					, ,				OR							
-	a)	Find the thick to withstand a not to exceed	am inte	rnal	pres		•		•							
	b)	A steel cylind 160 mm inte radial pressu the junction.	rnal dia re at th	amet e cor	er. A mmo	fter : n jun	shrin	king,	the o	diam	eter a	at the	junct	ion is	230 mr	n and
		trie juriction.	_ = ZX I	IU IN	1/111111		NIT-	.11								
	D	erive the expre	ession f	for m	axim			e trai	nsmitt OR	ed b	y a ho	ollow	circula	ır shaf	t.	
	lo Ti di	he stiffness of ad of 70 N. T he solid lengtl ameter of wir /mm ^{2.}	he max	kimur e spi	m sh ring	earir (the	ng sti coils	ing is ress are	s 1.7 l produ touch	ced iing)	in the	wire ven a	of sp s 7 c	oring is m. De	s 135 N etermine	/mm². e : (a)
		,				UI	NIT–	III								
	kľ	simply suppo N/m over the h hen this beam	ollow s	span	and	defle	ects 1	18 m one	m at t	he c	entre	. Dete	rmine	the c		
	C	2 m long color column is fixed alculate the sa	in dired	ction	and	posi	tion a	secti and o	ion of	end	is free	e. Tak	king fa	ctor o	f safety	as 4,
	pi	nned ends.														
	of	he line of thrus specimen but hen the maxin	is disp	lace	s fro	sion t m it.	Calc	g sp ulate	the d	istar	nce of	the li	ne of	thrust	from th	
	**		idili otiv	000 1	0 22	70 gi	outo		OR	noai	1000	50 011	u 11011	1101 00	otioii.	
i	ca le	column is re arries an ecce ength from a agram for any	ntric po corner.	int lo Cal	oad o	of 40 e th	0 kN	on c	one di	agor	nal at	a dis	tance	of qua	arter dia	gonal
						U	NIT-	V								
	a)	Derive the ex	•													
	b)	How do you described expression for				flecti	on o			ndeı	unsy	mme	trical t	endin	g? Deri	ve the
	٨	chart vartical	otrut ic	of ro	otos	aula:	orac		OR otion	1000	~2 <i>~</i> ~	lt oo	rrios	م اممط	of good	lka ot
	a in	short vertical point 1.25cm attensity of the	away fr maximu	om tl um te	he ce ensile	entre	of th	e se	ction a	along	g one	of the	diag	onals.	Calcula	te the
	τn	e points at wh	ion they	y occ	ur.											
