	Hall	Ticket Number :										
											R-11 / R-13	
		e: 1G241	nostor Sur	nlor	ont	any	Eva	min	atia	nc F	$\sim \sim $	
	I	I D.IECH. II SEH								IIS L	December 2017	
Electrical Machines-II (Electrical & Electronics Engineering)												
	Мах	. Marks: 70	(210 0 110			01110		9	01111	91	Time: 3 Hour	S
				nswer	,		•		_			
		Al	I Questions	carry e		Il ma *****	rks (14 M	arks	eac	:h)	
1.	a)	With neat vector of	diagram expl	ain the	oper	ation	of a	singl	e pha	ase t	ransformer under loade	d
	,	conditions.	0 1		•			Ū	·			6M
	b)			•		•					is designed to work wit	h
		1.5 V per turn with		•		•						.,
		(i) The required number of turns on the primary and secondary windings respectively(ii) The cross sectional area of the core and (iii) The secondary current										у 8М
2.	a)	What is Voltage Regulation in a transformer? Derive an expression for the voltage										
		regulation in terms of the transformer parameters under lagging load condition with the										
		help of vector diag	gram.									7M
	b)	• •					•	•			dary resistances of 0.2	
		•	•								calculate the secondar aximum efficiency at 0.	•
		p.f lagging.		olonoy	0000			aloun			aximum emolency at e.	7M
3.	a)	With a neat circuit diagram explain how Sumpner's test is conducted on a pair of identical								al		
	transformers to find the performance.									6M		
	b)	-	•						•		el. The internal impedanc an internal impedance o	
		(0.008+j 0.05) p.u.		<i>,</i> .							•	, 8M
4.	a)	With a neat diagra	-								•	7M
	b)	What is the impor	rtance of tap	chang	jing ii	n trar	nsforr	nersí	? Exp	olain	ON LOAD tap changin	g
		with relevant diag										7M
5.	a)	•		torque	e dev	elope	ed in	a th	ree p	ohase	e induction motor unde	er 6M
	b)	running condition. An 8-pole, 50 Hz.; 3-phase induction motor has rotor input of 100 kw on full load. The rotor										
e.m.f makes 120 cycles per minute. Determine (i) Rotor speed in RPM (ii)												
		•	ower develop	ed by	and	(iv) R	lotor	resis	tance	e per	r phase if rotor current i	
		80 A per phase.			_							8M
6.		The following test induction motor.	results refer	to a 3	-phas	se, 20) HP,	440	V, de	elta c	connected, 50 Hz; 4-pol	е
		Running light test:	: 440 V: 10 A	(line):	1.5	Kw (i	input)				
		Locked rotor test :				•	• •					
		Draw the circle dia	agram of this	induct	ion m	otor	and o	deteri	mine	there	efrom	
		(i) Full load c	-									
		(ii) Maximum	• •		•	. .						
7	-)	(iii) The best p	•	• •					-1			14M
7.	a) b)	Explain the workin	•								v	7M 7M
8	b)	Discuss different r Write short notes		peeu C	UIIIO	1013	-pnas	se sq	une	lag		7M
0		a) Auto Trans										5M
		,	nd Crawling	in 3-ph	ase i	nduct	tion n	notor	s			4M
		c) Induction (•	•								5M
					*	**						

	Hal	Ticket Number : R-11 / R-13				
(Cod	e: IGC41				
		II B.Tech. II Semester Supplementary Examinations December 2017 Mathematics – III				
		(Common to EEE & ECE)				
	Мо	x. Marks: 70 Time: 3 Hours Answer any five questions				
		All Questions carry equal marks (14 Marks each)				
	a)	Prove that $(2n+1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x)$	7			
	b)	Show that $\int_{-1}^{1} P_m(x) \cdot P_n(x) dx = 0$, if $m \neq n$	7			
	a)	Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the origin although the Cauchy				
	Riemann equations are satisfied at the origin.					
	b)	Find the analytic function whose imaginary part is				
		$f(x, y) = x^{3}y - xy^{3} + xy + x + y$ Where $z = x + iy$.	8			
	a)	Separate the real and imaginary parts of $cosh(x+iy)$	6			
	b)	Find the general value of i^i				
	a)	Evaluate $\int (x+y) dx + x^2 y dy$ from (0, 0) to (3, 9) along $x^2 = y$				
		c	6			
	b)	Use Cauchy's Integral Formula to evaluate $\int_{c} \frac{\sin^2 z}{(z - f)^3} dz$, Where C is unit circle.				
		$c\left(z-\frac{J}{6}\right)$	8			
	a)	Find the Taylor's expansion of $f(z) = \frac{1}{1}$ with contart $z = i$				
•	a)	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ with center at $z = -i$.	7			
	b)	State and prove Laurent's theorem.	7			
	a)	Prove by calculus of residues $\int_{0}^{\infty} \frac{\cos px}{\left(x^{2}+b^{2}\right)} = \frac{f}{2b}e^{-bp}$				
		$\int_{0}^{b} (x^2 + b^2) = 2b$	7			
	b)	Evaluate by contour integration $\int_{0}^{2f} \frac{d_{\#}}{5+4\cos_{\#}}$				
		0	7			
•	a)	Use Rouche's theorem the prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the aircles $ z = 1$ and $ z = 2$				
		circles $ z = 1$ and $ z = 2$	8			
	b)	State and prove the fundamental theorem of algebra.	6			
•	a)	Define bilinear transformation. Find the bilinear transformation that maps the points $z = 2, i, -2$ into the points $w = 1, i, -1$ respectively	7			
	b)	Find the image of $ z-2i = 2$ under the mapping $w = \frac{1}{z}$	_			
		' ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠	7			

Hall	Ficke	et Number :							
Code		R-11 / R-13	3						
		ech. II Semester Supplementary Examinations December 2017 Pulse and Digital Circuits							
Max	. Mc	(Electrical and Electronics Engineering) arks: 70 Time: 3 Hou Answer any five questions All Questions carry equal marks (14 Marks each)	Jrs						
1.	a)) Describe the response of a Low-Pass RC circuit for Step input with necessary equations and waveforms.							
	b)	Obtain the response of a High-Pass RC circuit for Square input and then derive the expression for % Tilt.							
2.	a)	Give the circuits of Positive and Negative types of shunt clippers and explain their operation with the help of their transfer characteristics.							
	b)	Design the positive and negative peak clamper circuits and then explain its operation with the help of input and output waveforms.	7N						
3.	a)	Explain how a transistor can be used as a switch. Also explain various transistor switching times.	7N						
	b)	Explain how diode acts as switch? Define diode forward recovery time and reverse recovery time.	7N						
4.	a)	What is a monostable multivibrator? Explain with the help of a neat circuit diagram the principle of operation of a monostable multivibrator. Draw the waveforms at collector and Bases of both transistors.							
	b)	Explain the operation of Schmitt trigger with the help of circuit diagram and waveforms. Also define UTP and LTP.	7N						
5.	a)	Draw the circuit diagram of transistor Miller time base generator and explain its working.	7N						
	b)	Distinguish between voltage and current sweep circuits. Draw the circuit of a linear current sweep and explain its operation with the help of waveforms.	7N						
6.	a)	What is sampling gate? Draw the circuit diagram of unidirectional diode sampling gate and explain its operation.	7N						
	b)	Explain the operation of a six - diode sampling gate with necessary equations.	7N						
7.	a)	Define synchronization. What is one-to-one basis synchronization? What is phase delay and phase jitter?	7N						
	b)	Describe frequency division employing a transistor monostbale multivibrator with the help of circuit diagram and waveforms.	7N						
8.	a)	Realize 2-input AND gate using CMOS logic and explain its operation with the help of functional table.	7N						
	b)	Design a 2-input NOR DTL gate and then verify its truth table.	7N						