

6. a)

Switch 'k' is connected to a, at t=0 and moved to b after 1 time constant. The expression for i(t) for t > T

b)

Find time constant

4M

10M

7. a)

-	ALE)	
$- \sqrt{1}$	4	$\rightarrow t$

UNIT-IV

		Find exponential Fourier series and draw the spectrum.	10M
	b)	State and prove time convolution property using Fourier transformations	4M
		OR	
8.	a)	What is the relationship between Trigonometric and Exponential series?	4M
	b)	F.T. [sin w _o t u(t)]	10M
		UNIT–V	
9.	a)	$z(s) = \frac{S(s^2+2)}{(s_2+1)(s_2+3)}$ Synthesis using foster form I & II.	10M
	b)	What are the properties of $\frac{1}{2}$	
		OR	
10.	,	What are the properties of transfer function?	4M
	b)	ϵ the proper ties What ϵ_{3^3+2S} the tuging causer form_[]	

b) what $z_{s}^{\frac{1}{s^3+2S}} = \frac{1}{s^{s+2S}}$. Implement using cauer form-II.

F	lall 1	Ficket Number :													
C	ode	: 5G345]		R-15	
		B.Tech. II Semes	ter Su	Jpp	lem	nent	ary	Exa	min	atic	ns E)ece	mbe	r 2017	
							Circu			-					
٨	۸av	(E . Marks: 70	lectri	cal	and	Elec	tron	ics E	ngir	neeri	ing)		Tim	ne: 3 Hou	Irc
r		nswer all five units b	y cho	osing	g on	e qu	estio	n fro	m eo	ach	unit (5 x 14			513
				[**** NIT–	*****								
1.	a)	Draw the small-sigr	າal mo	del d					ver.o	deter	mine	Ri.R	and s	how that	the
	,	voltage gain is close	e to un	nity											8M
	b)	For a CE Amplifier and V_{CC} =12V. The			-										
		Determine the input			•	•							•	,	6M
-						_	0			_					
2.	a)	Sketch the circuit of									50				6M
	b)	Illustrate with neat of	SIRCUIT	the l		reque NIT–	-	resp	onse	of a	n RC	coup	led An	nplifier.	8M
3		Examine the High	-Frequ	Jenc	y re	spon	se c	of a	Emi	tter-F	ollov	ver c	ircuit a	applying	the
		Miller's theorem.					•	-							14M
4.	a)	Prove that in a pnp	, trans	istor	one	ratin	O t ni n		ctive	reai	on ti	he dif	fusion	canacita	nce
••	u)	C_{De} at the emitter ju			•		•			logi	011, 1		lacion	oupuona	8M
	b)	Obtain the expressi	on for	the	short	-circ	uit cu	irren	t gair	n of C	CE ar	nplifie	er.		6M
					U	NIT-I	II								
5.	a)	Describe the four ty	pes of	ffee	dbac	k top	ologi	ies.							8M
	b)	What is the relation feedback A?	onship	bet	wee	n the	e tra	nsfei	[,] gai	n wi	th fe	edba	ck A _f	and with	nout 6M
							0								
6.	a)	Draw the circuit of output resistance.	a volta	age-	Shun	nt Am	nplifie	er an	d de	rive t	he e	xpres	sions 1	for input	and 8M
	b)	Define the term fee	dback	facte	or a	and a	amou	int of	feed	lback	κ.				6M
						NIT-I									
7.	a)	Explain the Barkha													6M
	b)	Explain the operation for frequency of osci		•	hase	e shif			r usi	ng B	JI ar	nd de	rive the	e express	sion 8M
8.	\sim	Draw the electrica		valo	ot of		0		ria a	nyeta		d nlat	ite ro	actanco	v/c
0.	a)	frequency function.	•			•				•		•			
		place when the crys	stal is r	used	lasa	a par	t of th	ne sii	nuso	idal d	oscilla	ator?			6M
	b)	Explain the operation and the condition for				•		itor. I	Ment	ionin	g its	frequ	ency o	f oscillati	ons 8M
					U	NIT-'	V								
9.	a)	Determine the input	•		•		•				•			•	
	b)	Calculate the efficience peak input voltages	•) V _{L(}	_{P)} =6\		supp	oly vo	oltage	of Vo	c= 24V v	with 6M
10.	a)	Differentiate betwee	יות מב	sh-ni	ill an	nd co	0 mole		tany	s\/mr	netry	confi	aurativ	n of a d	266
10.	,	B amplifier.					•		·	•	-		•		6M
	b)	Calculate the harm amplitude of 2.5V, 0.1V and fourth of 0	second	d ha	rmor	nic ai d TH	mplit ID.			•		•	•		
						*	**								

	На	II Ticket Number :									
	Cod	e: 5G241 R-15									
		II B.Tech. II Semester Supplementary Examinations December 2017									
		Electrical Machines-II									
		(Electrical and Electronics Engineering)									
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)										

		UNIT–I									
1.	a)	Explain the construction, principle of operation of an transformer and show that $V_1/V_2=N_1/N_2=I_2/I_1$	14M								
		OR	14111								
2.	a)	Arrive at the phasor diagram of transformer when it is operating under load and explain.	7M								
	b)	A100KVA, 3300V/240V, 50HZ single-phase transformer has 990 turns on the primary. Identify the number of turns on secondary and the approximate value of primary and secondary full load currents.	7M								
		UNIT–II									
3.	a)	What is meant by Inrush current in Transformer? Describe the nature of inrush currents									
		and its problem during transformer charging.	7M								
	b)	A 500KVA Transformer has a core loss of 2200 watts and a full load copper loss of 7500 watts. If the power factor of the load is 0.90 lagging, Evaluate the full load efficiency and									
		the KVA load at which maximum efficiency occurs.	7M								
		OR									
4.		Describe the method of calculating the regulation and efficiency of a single-phase transformer by OC and SC tests?	14M								
		UNIT–III									
5.	a)	Explain the constructional details of a 3- transformer and discuss its merits and demerits over three 1- transformers.	7M								
	b)	Explain three phase transformer connections in methods.	7M								
		OR									
6.	a)	Write short notes on three winding transformer.	7M								
	b)	With the help of connection and vector diagrams how a 2- supply can be									
		obtained from 3- supply.	7M								
-	、										
7.	a)	Explain the principle of operation of three-phase induction motor.	7M								
	b)	Explain briefly the production of rotating magnetic field. What are the speed and direction of rotation of the field? Is the speed uniform?	7M								
		OR									
8.		Define torque. How it is developed in wound rotor machines? Derive an expression for the same. State the assumptions made.	14M								
		UNIT-V									
9.	a)	Explain why induction motors are often described as 'constant speed' machines	7M								
	b)	What determines the direction of rotation of an induction motor? How is the direction reversed?	7M								
		OR									
10.	a)	Discuss different stator side speed control methods of Induction motor in detail									
10.	uj	with suitable diagrams.	7M								
	b)	A 3- squirrel cage induction motor has maximum torque equal to twice the full load torque. Determine the ratio of motor starting torque to its full-load torque, if it is started by (i) direct-on-line starter, (ii) star-delta starter, (iii) auto-transformer starter with 70 % tapping. The per phase rotor resistance and per phase standstill reactance referred to stator are 0.2 and 2 respectively. Neglect stator impedance.	7M								

Hall T	icke	t Number :														
Code	: 5 Gź	244	1	J						ľ					R-15	
II B.Tech. II Semester Supplementary Examinations December 2017 Linear Control Systems																
							Con t Elec		-			nal				
		rks: 70 er all five uni	-							_			5 x 14		ne: 3 Ho Marks)	Urs
								*****	- 1	1						
1.	a)	Derive the advantages servomotor.	of a				of fie		ontro					•		14M
								OF	२							
2.	a)	What is SFO	G?	/rite t	he a	pplic	ation	of S	FG.	State	Mas	son's	gain f	ormul	a.	7M
	b)	Draw the SF	=G fo	or the	follo	wing	l equ	ation	IS							
		$x_1 - x_2 - 2x_3$	5)											
		$2x_2 - 3x_3 - $														
		$7x_1 - 3x_3 - 2$	$2x_4 =$	= 0						_						7M
	,	-						UNI		_ 						
3.	a)	The open-lo														
		by $G(s) = \frac{1}{s(s)}$		·						% m	axim	ium (oversh	oot ar	nd peak	
		time 1.0 sec														7M
	b)	Determine t	he e	rror c	onst	ants	for st			est si	gnal	5.				7M
								OF								
4.		The overa $\frac{C(s)}{R(s)} = \frac{1}{s^2 + 1}$										-		-	en by termine	
		the derivation maximum of with derivation	overs	hoot	and	stea	idy s				•				-	14M
								UNIT	[]]]							
5.	a)	Explain the H criterion.	abso	olute,	rela	tive a	and n	nargi	inal s	tabili	ity. S	tate	the lim	nitation	ns of R-	7M
	b)			ristic		•	ion					con		syste		
		$s^4 + 20s^3 + 1$														
		stable. Can K and the fr		•			•	scilla	ition.	97 H 3	SO, 11	na tr	ie requ		value or	7M
		.						OF								
6.	a)	Sketch the			•					nen c	pen	loop	transf	er fur	nction is	
		given by $G(x)$	s)H($s) = -\frac{1}{s}$	s(s +	$\frac{1}{4}(s^2)$	$\frac{1}{2} + 4s$	s + 13								7M
	b)	Lists out the														7M
	,															

7M

7M

UNIT–IV

7. Define minimum and non-minimum phase transfer function. Sketch the bode diagram for the transfer function $G(s) = \frac{1000}{(1+0.1s)(1+0.001s)}$. Determine the a) PM b) Gain margin c) Stability of the system. 14M

OR

- 8. a) State the definition of Type and order of the system. Sketch the polar plot for $G(s) = \frac{20}{s(s+1)(s+3)}$.
 - b) Define PCF and GCF. Sketch the inverse polar plot of $G(s) = \frac{1 + ST}{ST}$.

UNIT–V

9. A unity feedback system has an open loop transfer function

$$G(s) = \frac{K}{s(s+1)(0.2s+1)}$$
.

Design a phase–lag compensation for the system to achieve the following specifications: Velocity error constant K_v = 8, phase margin =40 degrees. Also compare the cross over frequency of the uncompensated and compensated system. 14M

OR

10. a) Define Observability. Check the Observability and find its rank.

$$\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \\ \cdot \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = Ax + Bu$$
7M

b) State Cayley-Hamilton. Find the f(A)= e^{At} for $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$. 7M

* * *

ŀ	Hall ⁻	Ficket Number :	
С	ode	: 5GC41 R-15	
	II	B.Tech. II Semester Supplementary Examinations December 2017	
		Complex Variables and Special Functions	
٨	Max	(Common to EEE & ECE) . Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
		******** UNIT–I	
1.	a)	Express the integrals $\int_{0}^{\infty} x e^{-x^8} dx \cdot \int_{0}^{\infty} x^2 e^{-x^4} dx$ in terms of Gamma functions.	8M
	b)	Find the principal value of $\sqrt{2i}$.	
	- /		6M
2.	a)	Show that $\int_{0}^{\frac{T}{2}} \frac{d_{\pi}}{\sqrt{\sin \pi}} \cdot \int_{0}^{\frac{T}{2}} \sqrt{\sin \pi} d_{\pi} = f$	7M
	b)	Find the real and imaginary parts of $\cot z$	7M
		UNIT–II	
3.	a)	State and prove Cauchy-Riemann equations in polar form and hence deduce that	
		$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2} = 0$	
		$\partial r^2 + r \partial r + r^2 \partial_{\mu}^2$	7M
	b)	Find an analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$	7M
		OR	
4.		Show that for $f(z) = \frac{2xy(x+iy)}{x^2 + y^2}$ if $z \neq 0$ the C-R equations are satisfied at origin but	
		= 0 if $z = 0$	
		derivatives of $f(z)$ at origin does not exist.	14M
		UNIT–III	
5.	a)	Evaluate, using Cauchy's integral formula $\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$	7M
	b)	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point $z = -i$	7M
		OR	
6.	a)	Evaluate $\int z^2 dz$ along the straight line from $z = 0$ to $z = 2 + i$	

- 6. a) Evaluate $\int_{c} z^2 dz$ along the straight line from z = 0 to z = 2 + i
 - b) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for 0 < |z+1| < 2. 7M

7M

Code: 4GC41

7M

7M

7M

7M

UNIT–IV

- 7. a) Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2
 - b) Use Rouche's theorem to solve $p(z) = z^9 2z^6 + z^2 8z 2$, C: |z| = 1 7M

OR

8. a) Using Residue theorem, evaluate $\int_{c} \frac{3z^2 + 2}{(z-1)(z^2+9)} dz$, where C is the circle |z-2| = 2.

b) State and prove Argument principle.

UNIT–V

- 9. a) Discuss the transformation $w = \sin z$.
 - b) Find the bilinear transformation which maps the points $z = 0, 1, \infty$ onto w = -1, -i, 1. 7M

OR

- 10. a) Show that $w = \frac{i-z}{i+z}$ maps the real axis of z-plane into the circle |w| = 1 and the half plane y > 0 into the interior of the unit circle |w| = 1 in the w-plane.
 - b) Find the bilinear transformation which maps the points z = 1, i, -1 onto w = 2, i, -2 respectively. Find the fixed points of the transformation. 7M
