\square

I| B.Tech. II Semester Regular Examinations May 2016

Mathematics - III

(Common to EEE \& ECE)

Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Evaluate $\int_{0}^{1} x^{3} \sqrt{1-x} d x$ using $\beta-\Gamma$ functions.
b) If $\tan (x+i y)=u+i v$ then show that $u^{2}+v^{2}-2 v \operatorname{coth} 2 y+1=0$.

OR
2. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta \quad \cos ^{\frac{7}{2}} \theta d \theta$.
b) Find the general and principal values of $\log (1+i \sqrt{3})$.

UNIT-II

3. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic everywhere.
b) If $f(z)=u+i v$ is analytic function of z and if $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$, find $f(z)$ in terms of z.

OR

4. Suppose $f(z)=u+i v$ is an analytic function.
(i) Show that u and v satisfy Laplace's equation.
(ii) If $u=x^{2}+y^{2}$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$.

UNIT-III
5. a) Evaluate $\int_{c} \frac{d z}{(z-1)(z-3)}$ where c is $|z|=2$ using Cauchy's integral formula
b) Expand the function $f(z)=\frac{z}{z+2}$ in a Taylor series with center $z_{0}=1$ then find its radius of convergence.

OR

6. a) Evaluate $\int_{c} \frac{z-2}{z} d z$ where c is the semi-circle $z=2 e^{i \theta}$ with $0<\theta<\pi$
b) Find the Laurent's series expansion of $f(z)=\frac{1}{(z+1)(z+3)}$ for $1<|z|<3$ and hence, evaluate $\int_{C} f(z) d z$, where $C:|z|=1.5$.

UNIT-IV

7. a) Determine the poles of the function $f(z)=\frac{1-2 z}{z(z-1)}$ and find the residue at each pole.
b) Evaluate the real integral $I=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ by the method of residue theorem.
8. a) State and Prove Argument principle.
b) Show that one root of the equation $z^{4}+z+1=0$ lies in the first quadrant.

UNIT-V

9. Consider the points $0, \infty, i$ in z-plane is mapped onto the points $\infty, 0,-i$ in w - plane under a bilinear transformation $f(z)$.
(i) Determine the bilinear transformation $f(z)$.
(ii) Find the image of $|z|<1$ under $f(z)$.
(iii) Find the Invariant points of $f(z)$.

OR

10. a) Find the bilinear transformation which maps $z=1, i,-1$ onto the point $w=i, 0,-i . \quad 7 \mathrm{M}$
b) Show that the image of the circle $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ in Z-plane is the vertical line $u=1$ in W-plane under the bilinear transformation $w=\frac{1}{z}$.

Hall Ticket Number : \square

II B.Tech. II Semester Regular Examinations May 2016 Electrical Technology

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Obtain z - parameters for the given network

b) Derive Y-Parameters in terms of individual Y-Parameters of two two-port
networks when they are parallel connected

OR

2. a) Obtain the Y -Parameters of a passive network whose Admittances are $\mathrm{Y}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{B}}$ and Y_{c}, where Y_{c} appears in series branch
b) Find ABCD parameters for cascade network

UNIT-II

3. a) Derive the expression for current after $t=0$, in a RLC parallel circuit when it is switched to an ac source at $t=0$ seconds, which has $v(t)=V_{m} \sin (w t+\theta)$
b) A series $R C$ circuit of $R=15$ and $C=0.2 F$ is supplied with a constant voltage of 15 V at $\mathrm{t}=0$, obtain the current expression in time domain

OR

4. a) Define the time constant of R-L circuit. Give its Significance
b) An uncharged 80 F capacitor is connected in series with a 1 k resistor and switch across a 110 V supply. Determine the time constant of the circuit and the initial value of current flowing. Determine also the value of current flowing after (i) 40 ms and (ii) 80 ms .

UNIT-III

5. a) Design T-type attenuator to provide the attenuation of 15 dB . Taking characteristic impedance 200 .
b) Derive the expression for cutoff frequency in case of constant K low pass filter 7M

OR

6. a) Design a low pass filter(both T and π sections) having a cutoff frequency of 2 KHz to operate with a terminated load resistance of 500
b) Write a short note on Band pass filter 7M

UNIT-IV

7. a) Derive the expression for torque developed by the DC motor
b) A 440V DC shunt motor takes a no load current of 2.5 A . The resistance of the shunt field and armature are 550 and 1.2 respectively. The full- load line current is 32A. Find the full- load output and the efficiency of the motor.

OR

8. a) Explain the operation of a 4 point starter with neat sketch
b) A 4 pole, lap wound, DC generator has 42 coils with 8 turns per coil. It is driven at $1120 \mathrm{r} . \mathrm{p} . \mathrm{m}$. If the useful flux per pole is 21 m Wb . Calculate the Generated EMF. Find the speed at which it is to be driven to generate the same EMF as calculated above, with wave wound armature

UNIT-V

9. a) A $1-\Phi$ transformer has 180 turns and 360 turns respectively in its primary and secondary windings. The respective resistances are 0.233 and 0.067 . Calculate the (i) secondary resistance referred to primary (ii) primary resistance referred to secondary (iii) Total resistance of the transformer referred to primary
b) Derive the EMF Equation of a transformer and Explain the working principle of a transformer

OR

10. a) Explain the principle of operation of stepper motor and draw its characteristics
b) Explain the shaded pole motor with neat sketch 7M
\square

II B.Tech. Il Semester Regular Examinations May 2016

 Random Variables and Random Processes

 Random Variables and Random Processes}

(Electronics \& Communication Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and prove the properties of Distribution and Density functions.
b) In a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white,
and 30 blue. What are the probabilities of selecting a ball of each colour. 7 M

OR
2. a) State and Prove bayes' Theorem.

7M
b) Explain Conditional Distribution and Density Functions.

UNIT-II

3. a) A random X is uniformly distributed on the interval ($-5,15$). Another random variable $\mathrm{Y}=\mathrm{e}^{-x / 5}$ is formed. Find $\mathrm{E}[\mathrm{Y}]$.

7M
b) Define moment generating function and mention its properties. 7M

OR
4. a) Explain the concept of transformation of random variable X.
b) A discrete random variable X has possible values $x_{n},=n, n=1,2,3$ which occur
with probabilities $p\left(x_{n}\right)=(0.5)^{n}$ Find $E[X]$ and $\operatorname{VAR}(X)$. $7 M$

UNIT-III
5. a) Explain the properties of Joint Distribution and Density Functions.
b) Explain joint central moments and joint characteristic functions.

OR

(i) Find tr ${ }^{\text {he }} \mathrm{c}, r^{\text {stant }}$ ' b ' s° that this is a valid joine where density funcion.
(ii) Find $P\left(0 . j b<x_{2}+y_{2}<0.8^{b}\right)$
b) Briefly explain the concept of statistical independence.

UNIT-IV

7. a) Explain the concept of Wide Sense Stationary random processes.

7M
b) What is mean ergodic and correlation ergodic random processes. Explain?

OR
8. a) Given two random processes $X(t)$ and $Y(t)$. find the expressions for auto correlation functions of $W(t)=X(t)+Y(t)$ if
i) $X(t)$ and $Y(t)$ are correlated
ii) They are uncorrelated.
iii) They are uncorrelated with zero means
b) Briefly explain the Time averages and Ergodicity of random processes.

UNIT-V

9. a) Consider a random processes $X(t)=A \cos \left(\omega_{0} t+\varphi\right)$ where A and ω_{0} are real constants and φ is a random variable uniformly distributed over the interval $(0, \pi / 2)$. Find the average power in $X(t)$.
b) List out the properties of cross power density spectrum. 5 M

OR

10. a) Briefly explain the Bandwidth of power density spectrum. 7M
b) Derive the relationship between power spectrum and auto correlation function. 7 M

II B.Tech. II Semester Regular Examinations May 2016

Switching Theory and Logic Design

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) (i) Convert the following number
$(2468)_{10}=(\quad)_{16}$
(ii) Determine the value of x for the following number
$(292)_{10}=(1204)_{x}$
b) Briefly explain the significance of error detection and correction codes in digital communication. Is parity bit is an error detection and correction code? Explain how Hamming code detects a single bit error and corrects it with a suitable example.

OR

2. a) Algebraically prove the following equations, identify the postulates or theorems of Boolean algebra used?
(i) $a b+a^{\prime} b=b$
(ii) $a^{\prime}+a b+a^{\prime}+b$
(iii) $a b+a \prime c+b c=a b+a^{\prime} c$
(iv) $(\mathrm{ab})^{\prime}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}$
b) Implement the following functi asing NAND gates
(i) $\mathrm{Y}_{1}=\mathrm{A}(\mathrm{B}+\mathrm{CD})+\overline{B C}$
(ii) $Y_{2}=w x+\bar{x} y\left(\bar{u}_{+}+\bar{w}\right)$

UNIT-II

3. a) Convert the given expression in standard POS form

$$
\begin{aligned}
& F_{1}(A, B, C, D)=(A+B)(B+C)(A+C) \\
& F_{2}(P, Q, R)=(P+\bar{Q})\left(P+R_{1}\right.
\end{aligned}
$$

b) Realize the following expressions using NAND and NOR logic separately

$$
Y=P Q^{\prime}+Q S+Q^{\prime} R S^{\prime}
$$

OR

4. Simplify the following Boolean expression using Quine Mc-Clusky tabulation
method $F(w, x, y, z)=\Sigma(0,1,2,5,7,8,9,10,13,15)$

UNIT-III

5. a) Design BCD to gray code converter and realize using logic gates. 9 M
b) Design a 2×4 decoder using NAND gates. 5M

OR

6. a) Write short notes on PROM 8M
b) Compare PROM, PLA and PAL. 6M

UNIT-IV

7. a) With neat sketches explain the operation of JK flip-flop. What is the draw back in JK flip-flop? 7M
b) Write short notes level mode and pulse mode asynchronous sequential circuits. 7M
OR
8 Design a mod-6 synchronous counter using JK flip-flops. 14M
UNIT-V
8. a) Distinguish between Mealy and Moore machines. 7M
b) Explain the rules for converting Mealy to Moore model with an example. 7M
OR
9. a) What are the capabilities and limitations of an FSM 4Mb) Draw a ASM chart for a 2-bit binary counter having one enable line E such that:$E=1$ (counting enabled)
$\mathrm{E}=0$ (counting disabled) 10M

Hall Ticket Number:										

Analog Communications

(Electronics \& Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A broadcast $A M$ transmitter radiates 50 KW of carrier power. What will be the radiated power at 80% modulation?
b) Draw the block diagram and explain the generation of SSB-SC wave using phase shift methods.
2. a) Consider the $A M$ signal $S_{A M}(t)=\left[A_{c}+m(t)\right] C O S 5000 t$, where the modulating signal is given by $m(t)=3 \cos 50 t+5 \cos 150 t$. Let the modulation index be 0.8. Find i) The amplitude of the carrier ii) carrier power \& iii) transmission efficiency.
b) What is the necessity of synchronous Carrier in the coherent detection of a Suppressed carrier signal? Explain in detail, with the necessary mathematical treatment.

UNIT-II

3. a) Explain how varactor diode is used to generate FM signal. Explain with
necessary mathematical equations.
b) Describe the usefulness of Carson's rule as applicable to FM Systems.

OR

4. a) Draw the circuit for Ratio detector and explain how it is derived from FosterSeely discriminator.

UNIT-III

5. a) Explain the noise performance of SSB- SC receiver and prove its S / N ratio is
unity.
b) Explain the concept of pre-emphasis \& de-emphasis and mention its necessity. 6M
OR
6. a) Derive the Noise figure in Frequency modulation. 8M
b) Explain threshold effect in Angle modulation. 6M

UNIT-IV

7. a) Draw the block diagram of $A M$ transmitter using low level modulation and
explain the significance of each block.
8M
b) What is an Amplitude Limiter? Explain its operation with a neat circuit Diagram.

OR

8. a) Explain the classification of Radio Transmitters. 6 M
b) The RF frequency, local oscillator frequency and IF frequencies of an AM receiver are $f_{s}=800 \quad f_{l}=1255 \mathrm{KHz}$ and I.F $=455 \mathrm{KHz}$ respectively
i. Determine image frequency.
ii. Image frequency rejection ratio for a loaded Q of 120.

UNIT-V

9 a) Explain the generation and detection of PPM signals with neat diagram. 8 M
b) Compare FDM and TDM schemes. 6 M

OR

10 a) Explain the generation and demodulation of a PAM signal with neat circuit diagram. 8 M
b) Explain the generation and demodulation of a PWM signal. 8 M
\square

II B.Tech. II Semester Regular Examinations May 2016

Field Theory and Transmission Lines

(Electronics \& Communication Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the electric flux density for a line charge using coulomb's law?
b) Letermine tile diverderce of these vector fields:
(i) $P=x^{2} y z a_{x}+x z{ }_{4 z}$
(ii) $Q=\rho \sin q_{1} a_{\rho}+\rho^{2} z a_{\phi}+z \cos \phi a_{z}$
(iii) $T=\frac{1}{r_{\bar{z}}} \operatorname{cl}^{\mathrm{s}} \theta a_{r}+r \sin \theta \operatorname{cas} \phi a_{\theta}+\cos \theta a_{\phi}$

OR

2. a) State Gauss's law and obtain point form of first Maxwell's equation?
b) Given the potential and in 1 work done in moving a $10^{\circ} \mathrm{C}$ charge from $A\left(1,30^{\circ}, 120^{\circ}\right)$ to $B\left(4,90^{\circ}, 60^{\circ}\right)$?

UNIT-II

3. a) Discuss convection and conduction currents, hence derive point form of ohms law?

(i) A nemisphericat shell of radius $z 0 \mathrm{~cm}$ (ii) A spherical shell of radius 10 cm 6N

OR

4. a) Derive expressions for continuity of current and relaxation time?
b) The re exp'nce of a round long wire of diameter 3 emaxation $4 \Omega / \sim$ urrent of $40{ }_{A}^{\text {ssista }}{ }_{\text {flow }}$ through the wire, find
(i) The conductivity of the wire.
(ii) The electric current density in the wire.

UNIT-III

5. a) State and derive Biot-Savart's law? Is Magnetostatic field conservative discuss, hence obtain M.E for divergence of magnetic field?
b) A current element of length 2 cm is located at the origin in free space and carries current 12 mA along a_{z}, a filamentary current of $15 \mathrm{a}_{\mathrm{z}}$, is located along $x=3, y=4$. Find the force on a current filament?

OR

6. a) What is magnetic energy? Derive energy stored in Magnetostatic field?
b) Given the magnetic vector potentia ${ }_{1}^{\text {energ }} \vee_{v m}\left(-\mathrm{ra}_{2 / 4}^{\mathrm{ore}}\right) \mathrm{a}_{\mathrm{z}} \mathrm{wb} / \mathrm{m}^{2}$? Calculate the total magnetic flux crossing the surface $\Phi=m / 2,1 \approx \rho<2 m, 0<z<5 m$?

UNIT-IV

7. a) State and Derive Poynting Theorem, hence obtain expression for time average power crossing a surface.

 respectively. Determine H_{0} and β such that given fields satisfy Maxwell's equations?

OR

8. a) Derive and obtain the relation between reflection coefficient and transmission coefficient due to reflection of plane waves at oblique incidence when E and H fields are polarized in parallel?

$E s={ }_{1} 00_{e^{f(0,0866 y+0.5 z)} a x V / m}$. टetermine (i) ω and (ii) $\boldsymbol{\lambda}$

UNIT-V

9 a) Derive and Obtain the expressions for propagation constant and Characteristic Impedance for Lossless transmission line?
b) A 100+j150 load is connected to a 75 lossless line.
Find (i) Reflection coefficient
(ii) VSWR
(iii) Load admittance
(iv) Input impedance from the load using smith chart?

OR

10. a) Explain how quarter wave transformer is used for load matching and impedance measurement of a transmission line?
b) An open wire transmission line having characteristic impedance 600Ω is terminated by a resistive load of 900Ω. Design single stub matched transmission line.
