Hall	Ticke	et Number :												Г			
Code	: 4G	C 41													R -	14	
		ll B.Tech	. II Se			athe	emo	atics	5 - I I	I	tion	s Mc	ay 20	16			
Max. Answe		ks: 70 five units by	y cho		-	ne c		tion		-	ch u	nit (5 x 14			Hours arks)	
							U	NIT-	ŀ								
1.	a)	Evaluate \int_{0}^{1}	$x^3\sqrt{1}$	$\overline{-x} dx$	c usi i	n g s	- Г fi	unctio	ons.							7	'M
	b)	If $\tan(x+iy)$	v) = u	ı+iv	then	sho	w th	at u^2 -	$+v^{2}-$	2v c c	oth $2y$	+1=0).			7	M
		f						OR	2								
2.	a)	Evaluate $\int_{1}^{\frac{1}{2}}$	sin ⁵	"	$\cos^{\frac{7}{2}}$	" G	ł"_									-	7 6 4
		⁰ Find the ge						ues d	of log	(1+i)	(3)						'M 'M
	,	i ina trio go	nora		a prii	loipu		NIT-		(1 / V	5).					,	IVI
3.	a)	Apply C-R everywhere		ditior	ns to	f(z				ow th	nat tl	he fu	Inctior	n is	anal		M
	b)	If $f(z) = u + f(z)$ in term			lytic	funct	tion o	of z ai	nd if <i>i</i>	u - v	= (x ·	– y)(.	$x^2 + 4x$	xy + .	y ²), f	find 10	M
								OR									
4.		Suppose f	(z) =	u + iv	is a	n ana	alytic	c fund	ction								
		(i) Show (ii) If $u = x^2$										r v)	and	\ A /I	rita	tha	
		(ii) if $u = x$ corres										л, у ј	and	vvi	ne	14	IN/
				0	•			NIT–I									111
5.	a)	Evaluate \int_{C}	$\overline{(z-z)}$	$\frac{dz}{1)(z}$	(-3)	wher	e c	is z =	=2 u	sing	Cau	chy's	s integ	gral f	formu	ula 7	'M
	b)	Expand the	e fun	ctior	f(z)	=	$\frac{z}{+2}$ ir	n a T	aylo	r ser	ies v	vith o	center	z_0	=1 tł	nen	
		find its radi															'M
								OR	2								
6.	a)	Evaluate \int_{c}	$\frac{z-2}{z}$	- dz	whe	re c	is the	e ser	ni-cir	cle 2	z = 20	e ⁱ " W	ith 0 <	" < j	f	4	M
	b)	Find the L	aure	nt's	serie	es ex	xpan	sion	of	f(z)	$=\frac{1}{(z)}$	$\frac{1}{(+1)(}$	$\overline{(z+3)}$	for1	z	< 3	
		and hence,	eval	luate	$\oint_C f$	(z) dz	z, wł	nere	C: z	=1.5	5.					10	M

7M

14M

UNIT–IV

7. a) Determine the poles of the function $f(z) = \frac{1-2z}{z(z-1)}$ and find the residue at each pole. 6M

b) Evaluate the real integral $I = \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ by the method of residue theorem. 8M

OR

- 8. a) State and Prove Argument principle.
 - b) Show that one root of the equation $z^4 + z + 1 = 0$ lies in the first quadrant. 7M UNIT-V

9. Consider the points $0, \infty, i$ in *z*-plane is mapped onto the points $\infty, 0, -i$ in *w*-plane under a bilinear transformation f(z).

- (i) Determine the bilinear transformation f(z).
- (ii) Find the image of |z| < 1 under f(z).
- (iii) Find the Invariant points of f(z).

OR

10. a) Find the bilinear transformation which maps z = 1, i, -1 onto the point w = i, 0, -i. 7M

b) Show that the image of the circle $\left|z - \frac{1}{2}\right| = \frac{1}{2}$ in Z-plane is the vertical line

u = 1 in W-plane under the bilinear transformation $w = \frac{1}{z}$. 7M

Hall Ti	cket	Number :	_
Code:	4 G 2	245 R-14	
		II B.Tech. II Semester Regular Examinations May 2016 Electrical Technology (Electronics & Communication Engineering) Narks: 70 Time: 3 Ho	
		five units by choosing one question from each unit (5 x 14 = 70 Marks) ************************************	2013
1.	a)	Obtain z- parameters for the given network	
	b)	Derive Y-Parameters in terms of individual Y-Parameters of two two-port networks when they are parallel connected OR	7M 7M
2.	a)	Obtain the Y-Parameters of a passive network whose Admittances are Y_A, Y_B and Y_C , where Y_c appears in series branch	7M
	b)	Find ABCD parameters for cascade network UNIT-II	7M
3.	a)	Derive the expression for current after t=0, in a RLC parallel circuit when it is switched to an ac source at t=0 seconds, which has $v(t)=V_m sin(wt+)$	7M
	b)	A series RC circuit of R=15 and C=0.2F is supplied with a constant voltage of 15V at t=0, obtain the current expression in time domain OR	7M
4.	a) b)	Define the time constant of R-L circuit. Give its Significance An uncharged 80µF capacitor is connected in series with a 1k resistor and switch across a 110V supply. Determine the time constant of the circuit and the initial value of current flowing. Determine also the value of current flowing after (i) 40ms and (ii) 80ms.	7M 7M
		UNIT-III	
5.	a)	Design T-type attenuator to provide the attenuation of 15dB. Taking characteristic impedance 200	7M
	b)	Derive the expression for cutoff frequency in case of constant K low pass filter OR	7M
6.	a)	Design a low pass filter(both T and sections) having a cutoff frequency of 2KHz to operate with a terminated load resistance of 500	7M
	b)	Write a short note on Band pass filter	7M

UNIT-IV

7.	a)	Derive the expression for torque developed by the DC motor	7M
	b)	A 440V DC shunt motor takes a no load current of 2.5A. The resistance of the shunt field and armature are 550 and 1.2 respectively. The full- load line current is 22A. Find the full load output and the efficiency of the motor	7M
		current is 32A. Find the full- load output and the efficiency of the motor. OR	7 111
8.	a)	Explain the operation of a 4 point starter with neat sketch	7M
0.	,		7 101
	b)	A 4 pole, lap wound, DC generator has 42 coils with 8 turns per coil. It is driven at 1120r.p.m. If the useful flux per pole is 21m Wb. Calculate the Generated EMF. Find the speed at which it is to be driven to generate the	
		same EMF as calculated above , with wave wound armature	7M
		UNIT–V	
9.	a)	A 1- transformer has 180 turns and 360 turns respectively in its primary and secondary windings. The respective resistances are 0.233 and 0.067. Calculate the (i) secondary resistance referred to primary (ii) primary resistance referred to secondary (iii) Total resistance of the transformer referred to primary	7M
	b)	Derive the EMF Equation of a transformer and Explain the working principle of a transformer	7M
		OR	
10.	a)	Explain the principle of operation of stepper motor and draw its characteristics	7M
	b)	Explain the shaded pole motor with neat sketch	7M

Hall	Ticke	et Number :												-			
Code	: 4G	341					<u></u>		<u></u>						R	-14	
ooue	• • • •	II B.Tecl	h. II S	em	neste	er R	eau	ılar	Exar	nina	atio	ns A	lay 2	201,	6		
			ndon				-						•		-		
		•	Elect	ron	ics 8	k Co	omm	nunic	catio	n Er	ngine	eerir	ng)	_			
-		arks: 70 <i>five</i> units by	/ cho	osin	na o	ne c	nues	tion	from	ea	chu	nit (5 x 1		-	e: 3 Ho Aarks	
/ (15000				0 Jii	ig o		****	*****	*	1001		(0 / 1	•	/011	Tanto	1
								UNI	[]								
1.	a)	State and pr	rove th	ne p	rope	rties	of D	istrib	ution	and	Den	sity f	unctio	ons.			7M
	b)	In a box the and 30 blue									•					white,	7M
								OF	ł								
2.	a)	State and P		•					_	_	_						7M
	b)	Explain Con	ditiona	al Di	istrib	outior			,	Func	tions	5.					7M
								UNIT									
3.	a)	A random X variable Y=			•				the i	nterv	/al (-	5, 15	5). An	othe	er rar	ndom	7M
	b)	Define mom	ient ge	ener	ating	g fun	ction	and	men	tion i	ts pr	oper	ties.				7M
								OF	2								
4.	a)	Explain the	conce	pt of	f trar	nsfor	matio	on of	rand	om ۱	/aria	ble X					7M
	b)	A discrete ra with probabi					•					=n, n	=1,2,3	3 wh	ich מ	occur	7M
							l	UNIT	-111								
5.	a)	Explain the	proper	rties	of J	oint	Distr	ibutio	on an	d De	ensity	/ Fur	octions	s.			7M
	b)	Explain joint	centra	al m	nome	ents a	and j	oint d	chara	cteri	stic f	uncti	ons.				7M
					ome		(11) (11)	OF									
6.	a)	Given the fu	Inction	nf(x	, y] =	= { (_ ⊢) -	v~5je	for	$x^2 +$	y² . wher	< b 'e					
		(i) Find the (ii) Find ^{P(}	0.5b <	$< x_2$	b' - c 2 _ y	that 2	t this	^{is} a)	valid	joint	den	sity f	uncilO)n.			9M
	b)	Briefly expla	in the	con		ofs	tatist	tical i	nden	ende	ance						5M
	5)	Diferty explo		COI	loopi	. 01 3		JNIT			51100	•					510
7.	a)	Explain the	conce	nt of	f \//ic	10 5) v rar	ndom	nro	-0000				7M
7.	b)	What is mea		•						•		•			volair	n?	7M
	0)	What is mot	an orge	ouio	una	0011	olativ	OF	-	Jian	uom	proc	,00000	5. 27	(piùi)	••	710
8.	a)	Given two correlation f					• • •) and	d Y(t). fin	id th	e ex	press	ions	s for	auto	
		i) X(t) and Y					()										
		ii) They are	uncor	rela	ted.												
		iii) They are	eunco	rrela	ated	with	zero	mea	ans								7M
	b)	Briefly expla	in the	Tim	ne av	veraç	·	nd E UNIT	-	city (of rai	ndom	n proc	esse	es.		7M
9.	a)	Consider a constants a (0, /2). Find	nd i	is a	rand	dom	varia	able	``		,		A an ed ove			e real terval	9M
	b)	List out the							ensitv	spe	ctrun	n.					5M
	~)				2.0		P.011	OF	•	570	2 011						
10.	a)	Briefly expla	in the	Bar	ndwi	dth c	of pov			y sp	ectru	ım.					7M
	b)	Derive the re					•			• •			rrelatio	on fu	Inctic	on.	7M
	~)															-	

Hall Ticket Number	er:													
Code: 4G342								<u></u>			1		R-14	
ll B.Te	ech. II Se Swit e (Electr	chiı	ng T	hec	ory o	and	Log	gic [Desi	gn		16		
Max. Marks: 70 Answer all five uni	s by cho	oosir	ng o		200s		from	n ea	ch u	nit (5 x 14		e: 3 Hc) Marks	
					l	UNIT	-1							
1. a) (i) Conve			ig nu	mbe	r									
•	$)_{10} = ($ mine the		o of y	(for	tha f	مالمير	ina r	umb	or					ЗM
	$_{10} = (1204)$		017				ing i	Iumo						ЗM
	plain the		nificar	nce c	of err	or de	tecti	on ar	nd co	rrect	ion coc	des ir	n digital	
	ication. Is	•	•										•	
example	nming co	ide (lelec	is a	sing		. enc	or an	a co	rrect	S IL WILI	nas	suitable	8M
						OR								
2. a) Algebraid theorems	cally prov s of Boole					uatior	ns, id	lentif	y the	post	ulates	or		
(i) ab + ((iv) (ab)'	a'b = b = a' + b'		(ii) a	' + al	b + a	' + b			(iii) a	ab +	a'c + b	с = а	ab + a'c	7M
(i) Y ₁	nt the foll = A(B + ^C = wx + ^x	D)+	\overline{BC}		JS I S I	ing N	JAN	D gat	es					7M
					l	JNIT	-11							
3. a) Convert	the given	exp	ressi	on in	star	ndard	POS	S forr	n					
F1(A,I	B,C,D) =	(<i>I</i> \+E	B)(B+	C)(A	+C)									
F ₂ (P,0	Q,R) = (P	+Q)(P+R											7M
b) Realize t	he follow	•	•			ing N	JAN	D and	NO b	R log	jic sepa	arate	ly	
	Y = PQ'	+ Q\$	S + C	'RS'										7M
4. Simplify	the follov	vina	Bool	ean	expr	OR essio		sina	Quin	e Mo	:-Clusk	v tał	oulation	1
1 2	F(w,x,y,z	•			•			•	a can re	0 1110		y car		14M
					ι	JNIT-	-111							
5. a) Design E	CD to gra	ay co	ode c	onve	erter	and I	realiz	ze us	ing lo	ogic (gates.			9M
b) Design a	2 x 4 de	code	er usii	ng N	AND	•								5M
G a) Minita ab	ort notoc					OR								011
,	ort notes PROM,													8M 6M
s, sompure		, \			-								Page 3	

UNIT-IV

7.	a)	With neat sketches explain the operation of JK flip-flop. What is the draw back in JK flip-flop?	7M
	b)	Write short notes level mode and pulse mode asynchronous sequential circuits.	7M
		OR	
8		Design a mod-6 synchronous counter using JK flip-flops.	14M
		UNIT–V	
9.	a)	Distinguish between Mealy and Moore machines.	7M
	b)	Explain the rules for converting Mealy to Moore model with an example.	7M
		OR	
10.	a)	What are the capabilities and limitations of an FSM	4M
	b)	Draw a ASM chart for a 2-bit binary counter having one enable line E such that:	
		E = 1(counting enabled)	
		E = 0(counting disabled)	10M

Hall 7	Ficke	et Number : R-14	
Code	ə: 4 0	5343	
		II B.Tech. II Semester Regular Examinations May 2016	
		Analog Communications	
Max.	. Mc	(Electronics & Communication Engineering) Irks: 70 Time: 3 Hou	Jrs
Answ	er a	Il five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)
		UNIT–I	
1.	a)	A broadcast AM transmitter radiates 50KW of carrier power. What will be the radiated power at 80% modulation?	7N
	b)	Draw the block diagram and explain the generation of SSB-SC wave using phase shift methods.	7N
		OR	
2.	a)	Consider the AM signal S_{AM} (t) = [A _c + m(t)]COS 5000t, where the modulating	
		signal is given by $m(t) = 3 \cos 50 t + 5 \cos 150 t$. Let the modulation index be 0.8. Find i) The amplitude of the carrier ii) carrier power & iii) transmission efficiency.	
	г.)		8N
	b)	What is the necessity of synchronous Carrier in the coherent detection of a Suppressed carrier signal? Explain in detail, with the necessary mathematical treatment.	6N
		UNIT-II	OIV
2			
3.	a)	Explain how varactor diode is used to generate FM signal. Explain with necessary mathematical equations.	8N
	b)	Describe the usefulness of Carson's rule as applicable to FM Systems.	6N
		OR	
4.	a)	Draw the circuit for Ratio detector and explain how it is derived from Foster-Seely discriminator.	8N
	b)	Compute the Bandwidth required for transmission of FM signal having	
		frequency deviation of 75 KHz and audio bandwidth of 10 KHz.	6N
		UNIT–III	
5.	a)	Explain the noise performance of SSB- SC receiver and prove its S/N ratio is unity.	8M
	b)	Explain the concept of pre-emphasis & de-emphasis and mention its necessity.	6N
		OR	
6.	a)	Derive the Noise figure in Frequency modulation.	8N
		Explain threshold effect in Angle modulation.	6M

UNIT–IV

7.	a)	Draw the block diagram of AM transmitter using low level modulation and explain the significance of each block.	
			8M
	b)	What is an Amplitude Limiter? Explain its operation with a neat circuit Diagram.	6M
		OR	
8.	a)	Explain the classification of Radio Transmitters.	6M
	b)	The RF frequency, local oscillator frequency and IF frequencies of an AM receiver are $f_s = 800$ $f_l = 1255$ KHz and I.F = 455KHz respectively	
		i. Determine image frequency.	
		ii. Image frequency rejection ratio for a loaded Q of 120.	8M
		UNIT–V	
9	a)	Explain the generation and detection of PPM signals with neat diagram.	8M
	b)	Compare FDM and TDM schemes.	6M
		OR	
10	a)	Explain the generation and demodulation of a PAM signal with neat circuit diagram.	8M
	b)	Explain the generation and demodulation of a PWM signal.	8M

Hall T	icket	Number :															_	
Code:	4G3	44	1	1			1	1	ľ	J		ľ	1			R-14		
			Field	d Th	eory	y ar	nd T	ran	smis	sio	tion: n Lir inee	nes		2016	5			
Max. N Answer		s: 70 ïve units by	y ch	oosir	ng o		*****	****	from	n ea	ch u	nit (5 x			: 3 Hou Marks)		
1.	a)	Derive the	مامد	tric fl	uv de	ansity		AIT-I a line		irae i	isina	COLI	lomh	n'e la	w/2		81	Л
1.	,	Determine				•				•		cou		5 10			ON	1
	,	$(i) P = x^2$	yz a,	x + x	z q _z													
		(ii) Q = P	sin 9	a_{ρ} -	⊦ <i>p</i> ²z	a_{ϕ} -	+ 2 60	sφa	z									
		$(iii)T = \frac{1}{r_1}$	$\overline{2}$ cr ³⁵	θ a _r	+rs	in Ø	cas ¢	ο a _θ -	+ cos	θ a _φ							61	Λ
								0	R									
2.	a)	State Gaus				217	•		ĸ				•				81	Λ
	b)	Given the p work done	ooter in m	ntial [•] oving	nd ul r — (g a 1	τ ²) s 7 ²) s 0μC	poin <i>ine c</i> char	it fori tosø ge fre	m of find (om A	first i i) D i (1,	at (2, 30º, 1	/e 2, // /20 ⁰)	0) a to E	nd (i 8 (4,§	i) Ca 90º,	alculate 60º)?	61	Λ
							UN	IIT–II										
3.	a)	Discuss cor	nvecti	ion ar	nd co	nduct au	tion c	urren	ts, he ts, he	ence o	derive	e poir	nt fori	m of	ohm	s law?	8N	Λ
	b)	If scusing $\lambda = \frac{1}{r^3}$ (2) (i) A nemis	ovecti cos0 spher	ic 1 ar a ^r + icai s	nd con sin@ shell	of ra	dius	20 2		te) A sj	ne c pheri	urrer cal s	nt pa hell	assir of ra	ng t adius	hrol _{gh} S 10 - 6	61	Л
А	c)		rooo	iono	for o	ontin		0		and	rolov	otion	tim	<u></u>			01	٨
4.	a) b)	Derive exp					•									urrent	81	/1
	2)	of 40 ^{ssista} (i) The cor	vs th	roug	h the	wire	, finc					ia 4.0			if a			
		(ii) The ele		•				the w	vire.								61	Л
							UN	IT–II	I									
5.	a)	State and discuss, he								-				d co	onse	ervative	101	Λ
	b)	A current carries cur x=3, y=4.	rent	12m/	A alo	ng a	_z , a fi	lame	ntary	/ curr		•			•		4N	Л
								О										
6.	a)	What is ma	•		•••							•					81	Λ
	b)	Given the magnetic flu	nagn ux cro	etic v ossin	ecto g the	r pot surf	entia face	ener IVvm ¢⊄=∞	99 = /2 /2, 1	≥/₄)a ≂ <2	az wb. 2m, 0	/m² ? <z<5< th=""><th>? Cal im?</th><th>lcula</th><td>te th</td><td>ne total</td><td>61</td><td>Λ</td></z<5<>	? Cal im?	lcula	te th	ne total	61	Λ

UNIT–IV

7.	,	State and Derive Poynting Theorem, hence obtain expression for time average power crossing a surface.	10M
	b)	$ \begin{array}{l} \mathbf{a}_{he} = \overset{f_{o}}{\overset{f_{o}}{\overset{e}}} e^{powe} \overset{c}{\overset{c}} \mathbf{a}_{o}^{ssing} \overset{f_{o}}{\overset{o}} \mathbf{c}^{sce} Id in free \overset{e}{\overset{o}} \overset{g_{o}}{\overset{space}{\overset{f_{o}}{\overset{f_{o}}{\overset{space}{\overset{f_{o}}{\overset{f_{o}}{\overset{f_{o}}{\overset{space}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}{\overset{f_{o}}}{\overset{f_{o}}{\overset{f_{o}}}{\overset{f_{o}}{\overset{f_{o}}}{\overset{f_{o}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}}}}}}}}}}}}}}}}}} \\{f_{o}} f_{o}} f_{o}} f_{o}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}}}}}}}}}}}}}}} \overset{f_{o}}}{\overset{f_{o}}{\overset{f_{o}}}{\overset{f_{o}}}{\overset{f_{o}}}}}}}}}}}}}}}}}}}}}}} \\{f_{o}} f_{o}}} f_{o}}}}}}}}} \\{f_{o}} f_{o}}} f_{o}}}}}}}}}}}} \\{f_{o}}} f_{o}}}}}}}}} \\{f_{o}}} f_{o}}}}}}} }\\\\{f_{o}} f_{o}}} f_{o}}}}}}}}}}}}}}}}}} }\\{f_{o}}} f_{o}}}}}}}}} \\\\{f_{o}} f_{o}}}}}}}}}}}} \\\\{f_{o}} f_{o}}}}}}}} \\\\{f_{o}} f_{o}}}}}}} \\$	
		respectively. Determine H_0 and β such that given fields satisfy Maxwell's equations?	4M
		OR	
8.	a)	Derive and obtain the relation between reflection coefficient and transmission coefficient due to reflection of plane waves at oblique incidence when E and H fields are polarized in parallel?	10M
	b)		
	D)	Ar $fi \in \mathbb{N}^{1}$ way fi travels in $t_{r_{1}}$ as pace with electric $fi \in \mathbb{N}^{1}$ ponent $fi \in \mathbb{N}^{1}$ p	4M
		UNIT–V	
9	a)	Derive and Obtain the expressions for propagation constant and Characteristic Impedance for Lossless transmission line?	6M
	b)	A 100+j150 load is connected to a 75 lossless line.	
		Find (i) Reflection coefficient (ii) VSWR (iii) Load admittance	
		(iv) Input impedance from the load using smith chart?	8M
		OR	
10.	a)	Explain how quarter wave transformer is used for load matching and impedance measurement of a transmission line?	8M
	b)	An open wire transmission line having characteristic impedance 600Ω is terminated by a resistive load of 900Ω . Design single stub matched transmission line.	6M
			OIVI
