Hall Ticket Number :										
Code: 1G342										
II B.Tech. II Semester Supplementary Examinations December 2017										
	Electromagnetic Waves and Transmission Lines									
Ма	(Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours									
	Answer any five questions									
All Questions carry equal marks (14 Marks each)										
1.	a)	Define Gauss's Law and derive D and E due to infinite line charge. 81								
	b)	Derive the two Maxwell's equations from the static electric fields.	6M							
2.	a)	Define Linear, Isotropic and Homogeneous mediums	6M							
	b)	Derive the continuity of current equation for time varying and static fields	8M							
3.	a)	Define Ampere's Circuital Law and derive Maxwell's equation related to this.	7M							
	b)	Develop an expression for H both inside and outside of solid cylindrical conductor of radius 'a' carrying current 'l' with a uniform current density.	7M							
4.	a)	Describe inconsistency of Ampere's Law? Give the clarity of conduction and displacement current densities	8M							
displacement current densities.										
	D)	 b) Derive the boundary conditions between Dielectric-Dielectric and Dielectric- Conductor Interfaces. 								
5.	a)	Derive the wave equations for free space.	7M							
	b)	Describe the plane waves in good conductors.	7M							
6.	a)	Define and derive Poynting Theorem.	6M							
	b)	Describe the Reflection coefficient of Plane Wave with Normal and Oblique Incidences.								
7.	a)	Define the following terms.								
		i. Characteristic Impedance, ii. Propagation Constant, iii. Phase and								
		iv. Group Velocities	8M							
	b)	Describe the Condition for Distortion less and Minimum Attenuation transmission lines.	6M							
8.	2)	Define Reflection Coefficient and VSWR of transmission lines.	4M							
0.	a) b)		4111							
	 b) A transmission line of length of length 0.4 has a characteristic impedance of 100 and is terminated in a load impedance of 200+j180 . 									
	Find the following with a Smith Chart.									
		i. Voltage reflection coefficient, ii. VSWR								
		iii. Input impedance of the line	10M							

Hall Ticket Number :									
Code: 1G246									
II B.Tech. II Semester Supplementary Examinations December 2017									
		Electrical Technology							
N	(Electronics and Communication Engineering)								
10	Max. Marks: 70 Time: 3 Hours Answer any five questions								
	All Questions carry equal marks (14 Marks each)								
1.	a)	Find necessary expressions for Y parameters in terms of Z parameters.	8M						
	b)	Two 2 port networks are connected in cascaded find the equivalent Z							
_		parameters	6M						
2.	a)	The h-parameters of a two port network are h11=6 , h22=3 , h12=h21=5. Determine the ABCD parameters.	6M						
	b)	Show and find the condition of reciprocity & symmetry for z- parameters.	8M						
3.	a)	A series R-L circuit has R=20 and L=4H .A dc voltage of V= 80V is applied	OW						
	,	at t=0. Find (i) the equations for current.voltage across Rand L (ii) the current							
		at t-0.9 secs. 10							
	b)	Recall the time constant of series R-C circuit and give its significance.	4M						
4.	a)	An uncharged 60µF capacitor is connected in series with a 1k resistor and switch across a 100V supply. Determine the time constant of the circuit and							
		the initial value of current flowing. Determine also the value of current flowing							
		after (a) 30ms and (b)60ms.	8M						
	b)	A series RLC circuit is excited y dc voltage of V volts .find the transient response	6M						
5.	a)								
	b)	Design a constant-k low pass filter to match with a line having characteristic	7M						
		impedance of 500 and to pass frequency up to 5kHz.	7M						
6.	a)	What is an attenuator ? Derive design equation for T type attenuator							
	b)	Design type attenuator to provide an attenuation of 15dB. Taking characteristic impedance of 200 .							
7.	a)	Derive torque equation of dc motor?	8M 8M						
7.	b)	The armature of 6 [pole dc generator has a wave winding containing 664	OIVI						
	0)	conductors .Calculate the generated emf when flux per pole is 0.06 weber							
		and speed is 250 rpm.At what speed must the armature be driven to generate an emf of 250 V. if the flux per pole is reduced to 0.058 webers.	6M						
8.	a)	Recall the various methods of speed control applicable to dc series motor.	4M						
	b)	Describe with neat sketch the construction of dc machine.	10M						

	Hal	Ticket Number : R-11 / R-13						
(Cod	e: IGC41						
		II B.Tech. II Semester Supplementary Examinations December 2017 Mathematics – III						
		(Common to EEE & ECE)						
	Мо	x. Marks: 70 Time: 3 Hours Answer any five questions						
		All Questions carry equal marks (14 Marks each)						
	a)	Prove that $(2n+1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x)$	7					
	b)	Show that $\int_{-1}^{1} P_m(x) \cdot P_n(x) dx = 0$, if $m \neq n$	7					
	a)	Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the origin although the Cauchy						
		Riemann equations are satisfied at the origin.	6					
	b)	Find the analytic function whose imaginary part is						
		$f(x, y) = x^{3}y - xy^{3} + xy + x + y$ Where $z = x + iy$.	8					
	a)	Separate the real and imaginary parts of $cosh(x+iy)$	6					
	b)	Find the general value of i^i						
	a)	Evaluate $\int (x+y) dx + x^2 y dy$ from (0, 0) to (3, 9) along $x^2 = y$						
		c	6					
	b)	Use Cauchy's Integral Formula to evaluate $\int_{c} \frac{\sin^2 z}{(z - f)^3} dz$, Where C is unit circle.						
		$c\left(z-\frac{J}{6}\right)$	8					
	a)	Find the Taylor's expansion of $f(z) = \frac{1}{1}$ with contart $z = i$						
•	a)	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ with center at $z = -i$.	7					
	b)	State and prove Laurent's theorem.						
	a)	Prove by calculus of residues $\int_{0}^{\infty} \frac{\cos px}{\left(x^{2}+b^{2}\right)} = \frac{f}{2b}e^{-bp}$						
		$\int_{0}^{b} (x^2 + b^2) = 2b$	7					
	b)	Evaluate by contour integration $\int_{0}^{2f} \frac{d_{\#}}{5+4\cos_{\#}}$						
		0	7					
•	a)	Use Rouche's theorem the prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the aircles $ z = 1$ and $ z = 2$						
		circles $ z = 1$ and $ z = 2$	8					
	b)	State and prove the fundamental theorem of algebra.	6					
•	a)	Define bilinear transformation. Find the bilinear transformation that maps the points $z = 2, i, -2$ into the points $w = 1, i, -1$ respectively	7					
	b)	Find the image of $ z-2i = 2$ under the mapping $w = \frac{1}{z}$	_					
		' ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠	7					

Ha	Hall Ticket Number :							
Co	: 1G341 R-11 / R-13							
00	II B.Tech. II Semester Supplementary Examinations December 2017							
	Signals and Systems							
۸ <i>۸</i>	(Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours							
7•1	un.	Answer any five questions	5					
		All Questions carry equal marks (14 Marks each)						
1.	a)	Briefly explain the analogy between vector and signals	6M					
	b)	With an example explain the concept of orthogonality in complex functions	8M					
2.	a)	Briefly explain the properties of fourier series	6M					
	b)	Find the Exponential Fourier series of the following signal						
		X(t)						
		1						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8M					
3.	a)	Determine the Fourier Transform of the following functions						
		(i) $f(t) = e^{-a t }sgn(t)$ (ii) $x(t) = u(t)$ (iii) $x(t) = Cos_{o}t$	9M					
	b)	Explain the properties of a fourier transforms	5M					
4.	a)	What is a LTI system? Explain its properties. Derive an expression for the transfer function of a LTI system	6M					
	b)	A LTI system is described by the following differential equation	e					
	- /	$\frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 4x(t)$						
		The input is $x(t) = e^{-t} u(t)$						
		Find the total response with initial conditions y (0) = 3, $\frac{dy(0)}{dt} = 0$	8M					
5.	a)	Explain the properties of autocorrelation function	7M					
	b)	Explain sampling theorem for low pass signals and discuss the effect of under sampling.	7M					
6.	a)	Explain the process of Reconstruction of signal from its samples	7M					
	b)	Briefly explain Natural and Flat top Sampling	7M					
7.	a)	Explain the properties of Laplace Transform	6M					
	b)	Find the Laplace transform of						
		$x(t) = \begin{cases} e^t \sin 2t & t \le 0\\ 0 & t > 0 \end{cases}$						
			<u> </u>					
0	- \	Indicate the location of its poles and its ROC	8M					
	a) հ)	Write the difference between Laplace, Fourier and Z transforms.	6M					
	b)	Determine the Z-Transforms, ROC and poles and zeros of (i) $x(n) = 2^n u(n) + 3^n u(-n-1)$						
		(i) $x(n) = e^{-2n}u(n-1)$	8M					

Hall	Ticł	ket Number :													
Code: 1G245															
Il B.Tech. II Semester Supplementary Examinations December 2017															
		·			-		-			-		sign			
Ma	x M	(El arks: 70	ectr	onic	:s ar	id C	omn	nunio	catio	on Ei	ngin	eerir	ng)	Time: 3 H	ours
ma	.				Ans	wer	any	ive (ques	tions				11110.011	0015
		Al	l Que	estio	ns co	arry e		l ma *****	rks (14 M	arks	eac	h)		
1.		Discuss in de	tail a	bou	t errc	or det	ectin	g an	d cor	recti	ng co	odes.			14M
2.	a)	Realize XOR	, ANI	D an	d OF	R gate	es us	ing N	JAN) on	ly an	d NC	OR gate	es only.	7M
	b)	Express the boolean function F= A+B'C in a sum of min terms. 7M													
3.		Simplify the b	oole	an fi	unctio	on us	ing k	K-ma	p me	thod					
		F(A,B,C,D,E)	= (0	,2,4,	6,9,1	3,21	,23,2	5,29	,31)						14M
4.	4. With neat logic diagram explain look ahead carry adder. 14						14M								
5.	a)	Give the comparison between PROM, PAL and PLA. 7M					7M								
	b)	Implement the	e foll	owin	ig fur	nctior	ns wi	th a F	PLA.						
		$F_1(A,B,C) =$	(0,1	,2,4)										
		$F_2(A,B,C) =$	(0,5	5,6,7)										7M
6.	6. a) Draw and explain 4 bit up/down counter.						7M								
	b)	Draw and exp	olain	RS a	and [D Flip	o - flo	ps w	ith th	eir fu	unctio	on ta	bles.		7M
7.	a)	Define Mealy	and	Мос	ore m	achii	nes a	and d	isting	guish	ther	n.			7M
	 Reduce the no.of states in the state table given below and tabulate the reduced state table and give proper assignment. 														

PS	NS, Z								
FJ	X = 0	X = 1							
А	F, 0	B, 0							
В	D, 0	C, 0							
С	F, 0	E, 0							
D	G, 1	A, 0							
Е	D, 0	C, 0							
F	F, 1	B, 1							
G	G, 0	H, 0							
Н	G, 1	A, 0							

- 8. a) Mention salient features of ASM charts.
 - b) Draw and explain state diagram and ASM chart of a sequence detector. 7M

7M

7M