\squareHall Ticket Number :
R-11 / R-13
Code: 1G342

II B.Tech. II Semester Supplementary Examinations December 2017 Electromagnetic Waves and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)Time: 3 Hours1. a) Define Gauss's Law and derive D and E due to infinite line charge.8M
b) Derive the two Maxwell's equations from the static electric fields. 6M
2. a) Define Linear, Isotropic and Homogeneous mediums 6M
b) Derive the continuity of current equation for time varying and static fields 8M
3. a) Define Ampere's Circuital Law and derive Maxwell's equation related to this. 7M
b) Develop an expression for H both inside and outside of solid cylindrical conductor of radius 'a' carrying current 'l' with a uniform current density. 7M
4. a) Describe inconsistency of Ampere's Law? Give the clarity of conduction and displacement current densities. 8M
b) Derive the boundary conditions between Dielectric-Dielectric and Dielectric- Conductor Interfaces. 6M
5. a) Derive the wave equations for free space. 7M
b) Describe the plane waves in good conductors. 7M
6. a) Define and derive Poynting Theorem. 6M
b) Describe the Reflection coefficient of Plane Wave with Normal and Oblique Incidences. 8M
7. a) Define the following termsi. Characteristic Impedance, ii. Propagation Constant, iii. Phase andiv. Group Velocities8M
b) Describe the Condition for Distortion less and Minimum Attenuation transmission lines. 6M
8. a) Define Reflection Coefficient and VSWR of transmission lines. 4 Mb) A transmission line of length of length 0.4λ has a characteristic impedance of100 and is terminated in a load impedance of 200+j180
Find the following with a Smith Chart.
i. Voltage reflection coefficient,
ii. VSWR
iii. Input impedance of the line 10M

Hall Ticket Number :
R-11 / R-13
Code: 1G246

|| B.Tech. II Semester Supplementary Examinations December 2017 Electrical Technology

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Find necessary expressions for Y parameters in terms of Z parameters. 8 M
b) Two 2 port networks are connected in cascaded find the equivalent Z
parameters
2. a) The h-parameters of a two port network are h11=6, h22=3, h12=h21=5. Determine the ABCD parameters.
b) Show and find the condition of reciprocity \& symmetry for z-parameters.
3. a) A series $R-L$ circuit has $R=20$ and $L=4 H$.A dc voltage of $V=80 \mathrm{~V}$ is applied at $t=0$. Find (i) the equqtions for current.voltage across Rand L (ii) the current at $\mathrm{t}-0.9$ secs.
b) Recall the time constant of series R-C circuit and give its significance.
4. a) An uncharged 60 F capacitor is connected in series with a 1 k resistor and switch across a 100 V supply. Determine the time constant of the circuit and the initial value of current flowing. Determine also the value of current flowing after (a) 30 ms and (b) 60 ms .
b) A series RLC circuit is excited y dc voltage of V volts .find the transient response
5. a) Describe about filters classification.
b) Design a constant-k low pass filter to match with a line having characteristic impedance of 500 and to pass frequency up to 5 kHz .
6. a) What is an attenuator ? Derive design equation for T type attenuator 6 M
b) Design Π type attenuator to provide an attenuation of 15 dB . Taking
characteristic impedance of 200 . 8 M
7. a) Derive torque equation of dc motor? 8 M
b) The armature of 6 [pole dc generator has a wave winding containing 664 conductors .Calculate the generated emf when flux per pole is 0.06 weber and speed is 250 rpm.At what speed must the armature be driven to generate an emf of 250 V . if the flux per pole is reduced to 0.058 webers.
8. a) Recall the various methods of speed control applicable to dc series motor. 4 M
b) Describe with neat sketch the construction of dc machine.

Code: 1GC41

I| B.Tech. II Semester Supplementary Examinations December 2017
Mathematics - III
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Prove that $(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)$
b) Show that $\int_{-1}^{1} P_{m}(x) \cdot P_{n}(x) d x=0$, if $m \neq n$
2. a) Show that the function $f(z)=\sqrt{\mid x y} \mid$ is not analytic at the origin although the Cauchy Riemann equations are satisfied at the origin.
b) Find the analytic function whose imaginary part is

$$
f(x, y)=x^{3} y-x y^{3}+x y+x+y \text { Where } z=x+i y .
$$

3. a) Separate the real and imaginary parts of $\cosh (x+i y)$
b) Find the general value of i^{i}
4. a) Evaluate $\int_{c}(x+y) d x+x^{2} y d y$ from $(0,0)$ to $(3,9)$ along $x^{2}=y$
b) Use Cauchy's Integral Formula to evaluate $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, Where C is unit circle.
5. a) Find the Taylor's expansion of $f(z)=\frac{1}{(z+1)^{2}}$ with center at $z=-i$.
b) State and prove Laurent's theorem.
6. a) Prove by calculus of residues $\int_{0}^{\infty} \frac{\cos p x}{\left(x^{2}+b^{2}\right)}=\frac{\pi}{2 b} e^{-b p}$
b) Evaluate by contour integration $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$
7. a) Use Rouche's theorem the prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|=2$
b) State and prove the fundamental theorem of algebra.
8. a) Define bilinear transformation. Find the bilinear transformation that maps the points $z=2, i,-2$ into the points $w=1, i,-1$ respectively
b) Find the image of $|z-2 i|=2$ under the mapping $w=\frac{1}{z}$

Code: 1G341

|| B.Tech. II Semester Supplementary Examinations December 2017

Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. a) Briefly explain the analogy between vector and signals
b) With an example explain the concept of orthogonality in complex functions 8M
2. a) Briefly explain the properties of fourier series
b) Find the Exponential Fourier series of the following signal

3. a) Determine the Fourier Transform of the following functions
(i) $f(t)=e^{-a|t|} \operatorname{sgn}(t)$
(ii) $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
(iii) $x(t)=\operatorname{Cos} \omega_{0} t$
b) Explain the properties of a fourier transforms
4. a) What is a LTI system? Explain its properties. Derive an expression for the transfer function of a LTI system
b) A LTI system is described by the following differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=\frac{d x(t)}{d t}+4 x(t)
$$

The input is $x(t)=e^{-t} u(t)$
Find the total response with initial conditions $y(0)=3, \frac{d y(0)}{d t}=0 \quad 8 \mathrm{M}$
5. a) Explain the properties of autocorrelation function 7M
b) Explain sampling theorem for low pass signals and discuss the effect of under sampling. 7 M
6. a) Explain the process of Reconstruction of signal from its samples 7M
b) Briefly explain Natural and Flat top Sampling 7M
7. a) Explain the properties of Laplace Transform 6M
b) Find the Laplace transform of

$$
x(t)=\left\{\begin{array}{cc}
e^{t} \sin 2 t & t \leq 0 \\
0 & t>0
\end{array}\right.
$$

Indicate the location of its poles and its ROC
8. a) Write the difference between Laplace, Fourier and Z transforms. 6M
b) Determine the Z-Transforms, ROC and poles and zeros of
(i) $x(n)=2^{n} u(n)+3^{n} u(-n-1)$
(ii) $x(n)=e^{-2 n} u(n-1)$

Code: 1G245

|| B.Tech. II Semester Supplementary Examinations December 2017 Switching Theory and Logic Design

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. Discuss in detail about error detecting and correcting codes.
2. a) Realize XOR, AND and OR gates using NAND only and NOR gates only.
b) Express the boolean function $F=A+B{ }^{\prime} C$ in a sum of min terms. 7M
3. Simplify the boolean function using K-map method
$F(A, B, C, D, E)=(0,2,4,6,9,13,21,23,25,29,31)$
4. With neat logic diagram explain look ahead carry adder.
5. a) Give the comparison between PROM, PAL and PLA.
b) Implement the following functions with a PLA.
$F_{1}(A, B, C)=\sum(0,1,2,4)$
$F_{2}(A, B, C)=\sum(0,5,6,7)$
6. a) Draw and explain 4 bit up/down counter.
b) Draw and explain RS and D Flip - flops with their function tables.
7. a) Define Mealy and Moore machines and distinguish them.
b) Reduce the no.of states in the state table given below and tabulate the reduced state table and give proper assignment.

PS	NS, Z	
	$\mathbf{X = 0}$	$\mathbf{X = 1}$
A	F, 0	B, 0
B	D, 0	C, 0
C	F, 0	E, 0
D	G,	A, 0
E	D, 0	C, 0
F	F, 1	B, 1
G	G, 0	H, 0
H	G, 1	A, 0

8. a) Mention salient features of ASM charts.
b) Draw and explain state diagram and ASM chart of a sequence detector.
