C	Code: 4G344		<u> </u>	1	1	_	1	<u>I</u>	1		1		R-14	
	ll B.Tech. II Serr	neste	er S	upp	lerr	nent	ary	Exa	mir	atic	ns [Decei	mber 2017	
					-	and								
	(El Max. Marks: 70	ectr	onic	cs ar	nd C	Comr	nuni	icati	on E	ngir	neeri	ng)	Time: 3 Hou	~
	Answer all five uni	ts by	chc	osing	g on	e qu	estio	n fro	me	ach	unit (5 x 14		5
				Г		*	**				·			
2)	State and prove Gau						licati	000	of ac		0 W			
a) b)									-			roctatio	field	
b)	Derive an expressior	1101	ener	yy si	oreu	anu	OR	gy u	51151	Ly III e	electi	USIAIIC	, neiu.	
a)	Define divergence, gr	adior	nt cu	url in a	enho	rical		dinat		stom	with	mathan	natical expressio	n
a) b)					•	ncar	50-01	unat	e sy.	SIGIII	vvitii	mainen		
0)		gen				IIT–II								
a)	Derive an expressior	n for	serie	es an				e car	acito	or.				
, b)	Derive an expression f				•		•	•			capad	citance	of co-axial cable.	
,							OR							
a)	Discuss the propertie	es of	diele	ectric	mat	erials	6.							
b)	Derive the boundary	con	ditior	ns of	the	norm	al ar	nd tai	nger	ntial c	omp	onents	of electric field	at
	the interface of two n	nedia	a with	h diff	eren	t diel	ectrio	cs.						
					UN	IIT–II								
a)	Derive General field	rela	tion	for ti	me \	/aryir	ng el	ectric	; and	d ma	gneti	c fields	s using Maxwell	's'
ь)	equations	0 0 D	"Eor	odov		u of c	loot	omo	anot	ia ina	luotio	·••"		
b)	Write a technical not	e on	гаг	auay	sia	N OI E	OR	oma	gnei		luctic)n.		
a)	Dorivo on ovprossion	for	onor	av et	orod	lino		notio	field	1				
a) b)	•						-				rme	Hone	o dorivo standa	ard
D)	wave equations.	s equ	Jano	115 11	1 1110	syrai	anu	une	i enti			TIENC		liu
	·			Γ	UN	IT-IV	1							
a)	Derive the expressio	n for	the	atter	nuati	on co	onsta	nt, p	hase	e con	stant	and ir	ntrinsic impedan	се
	for a uniform plane w			•										
b)	•				•		•	pes	and	signi	fican	ce of p	polarization in E	M
	wave propagation wi	in su	ippoi	rung	equa	alions	or OR							
2)	Dorivo quitable rolati	one f	or in	toar		d noi		mod	f D	overtin	a th	oorom		
a) b)				-						•	-		•	
D)	$E = 0.5 \sin (108 t - z)$		-	-						-			pedance (iii)	
	Wave velocity (iv) H		.,		•••••						,		p ()	
				Γ	UN	IIT–V	,							
a)	Derive the Telegraph	nic eo	quati	ons o	of tra	insmi	ssior	n line	s.					
b)	Explain the characte	ristic	s of (disto	rtion	less	trans	smiss	sion	line a	and te	elepho	ne cable.	
							OR							
a)	Explain the principles		•				ng us	ing S	Singl	e stu	b tun	er and	double stub tur	er
	with diagrams. Differ													
b)								_	hort	ed se	ectior	n of 75	ohm transmissi	on
	line, I= /4, find the ir	iput	impe	aano	e as	sum	ing	= 0.						

Mathematics-III

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

1. a) Express the integrals $\int_{0}^{\infty} x e^{-x^{8}} dx \cdot \int_{0}^{\infty} x^{2} e^{-x^{4}} dx$ in terms of Gamma functions.

b) Find the principal value of $\sqrt{2i}$.

Hall Ticket Number :

Max. Marks: 70

OR

- 2. a) Show that $\int_{0}^{\frac{f}{2}} \frac{d_{\pi}}{\sqrt{\sin \pi}} \int_{0}^{\frac{f}{2}} \sqrt{\sin \pi} d_{\pi} = f$ 7M
 - b) Find the real and imaginary parts of $\cot z$

UNIT–II

3. a) State and prove Cauchy-Riemann equations in polar form and hence deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial_u^2} = 0$ 7M

b) Find an analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$ 7M

OR

4. Show that for $f(z) = \frac{2xy(x+iy)}{x^2 + y^2}$ if $z \neq 0$ = 0 if z = 0 the C-R equations are satisfied at origin but

derivatives of f(z) at origin does not exist.

UNIT-III

- 5. a) Evaluate, using Cauchy's integral formula $\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)(z-2)} dz$ where c is the circle |z| = 3 7M
 - b) Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z = -i 7M

OR

6. a) Evaluate $\int z^2 dz$ along the straight line from z = 0 to z = 2 + i

b) Expand
$$f(z) = \frac{1}{(z+1)(z+3)}$$
 in Laurent series valid for $0 < |z+1| < 2$.
7M

8M

Time: 3 Hours

6M

7M

14M

7M

Code: 4GC41

UNIT–IV

- 7. a) Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2
 - b) Use Rouche's theorem to solve $p(z) = z^9 2z^6 + z^2 8z 2$, C: |z| = 1 7M

OR

- 8. a) Using Residue theorem, evaluate $\int_{c} \frac{3z^2 + 2}{(z-1)(z^2+9)} dz$, where C is the circle |z-2| = 2. 7M
 - b) State and prove Argument principle.

UNIT-V

- 9. a) Discuss the transformation $w = \sin z$.
 - b) Find the bilinear transformation which maps the points $z = 0, 1, \infty$ onto w = -1, -i, 1. 7M

OR

- 10. a) Show that $w = \frac{i-z}{i+z}$ maps the real axis of z-plane into the circle |w| = 1 and the half plane y > 0 into the interior of the unit circle |w| = 1 in the w-plane.
 - b) Find the bilinear transformation which maps the points z = 1, i, -1 onto w = 2, i, -2 respectively. Find the fixed points of the transformation. 7M

7M

7M

7M

Hall	Ticke	et Number :	_
Code	: 4G	341 R-14	
		ech. II Semester Supplementary Examinations December 2017 Random Variables and Random Processes (Electronics & Communication Engineering)	
Max. Answe	-		ſS
1.	a)	Give Classical and Axiomatic definitions of Probability.	7M
	b)	In a single throw of two dice, what is the probability of obtaining a sum of at least 10?	7M
	,	OR	
2.	a)	State and Prove bayes' Theorem.	7M
	b)	With an example explain the following: i) Equality likely events ii) Exhaustive events.	
		iii) Mutually exclusive events.	7M
		UNIT–II	
3.	a)	What is the concept of Random Variable? Explain with a suitable example.	7M
	b)	Define moment generating function and mention its properties.	7M
		OR	
4.	a)	Explain Chebyshev's Inequality.	7M
	b)	A discrete random variable X has possible values x_n ,=n, n=1,2,3 which occur with probabilities $p(x_n)=(0.5)^n$ Find E[X] and VAR(X).	7M
5.	a)	State and explain the central limit theorem.	7M
0.	b)	 A joint sample space for two random variables X and Y has four elements (1,1), (2,2), (3,3) and (4,4). Probabilities of these elements are 0.1, 0.35, 0.05 and 0.5 respectively. i) Sketch the distribution function FXY (x, y) ii) Find the probability of the event {X 2.5, Y 6} 	, 101
		Find the probability of the event $\{X = 3\}$	7M
6.	a)	OR Given the function $f(x, y) = \begin{cases} \begin{pmatrix} x & y \\ x & - \end{pmatrix} & for x^2 + y^2 < b \\ else where \end{cases}$ (i) Find the constant 'b' for that this is a valid joint density function. (ii) Find $P(0.5 \ b < x_2 + y_2 < 0.8^b)$ the reporties of Jointly Gaussian Random variables?	9M
	b)	What are the properties of Jointly Gaussian Random variables?	5M

		UNIT-IV	
7.	a)	List and explain various properties of Autocorrelation function.	7M
	b)	Given the Autocorrelation function of the processes:	
		$R_{XX}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$	
		Find the mean and variance of the process X(t).	7M
		OR	
8.	a)	Compare the Cross Correlation Function with Autocorrelation function.	7M
	b)	Briefly explain the Time averages and Ergodicity of random processes.	7M
		UNIT–V	
9.	a)	Define Power Spectral Density? List out its properties.	9M
	b)	Compute the average power of the process having power spectral density	
	,	$\frac{6\omega^2}{1+\omega^4}$.	
		$\overline{1+\omega^4}$.	5M
		OR	
10.	a)	Briefly explain the Bandwidth of power density spectrum.	7M
	b)	Derive the relationship between power spectrum and auto correlation function.	7M

Hall Ticl	ket Number :									
Code: 4	G342 R-14									
II B.	Tech. II Semester Supplementary Examinations December 2017									
	Switching Theory and Logic Design									
	(Electronics and Communication Engineering)									
	arks: 70 Time: 3 Hours all five units by choosing one question from each unit (5 x 14 = 70 Marks)									
7 110 10 01										
	UNIT-I									
1. a)										
	(i) Decimal 225.225 to binary, octal and hexadecimal.(ii) Binary 11010111.110 to decimal, octal and hexadecimal 7M									
b										
	four parity bits and odd parity is used. 7M									
	OR									
2. a)	Determine the purpose of digital circuit of Fig.									
	A• • Y1									
	L +F Y₀ L L									
	Y_2									
	B•••• 8M									
b)	Verify that the (i) NAND (ii) NOR operations are commutative but not associate. 6M									
2 0	UNIT–II									
3. a)	Convert the given expression in standard POS form									
	$F_{1}(A,B,C,D) = (A+B)(B+C)(A+C)$ $F_{2}(P,Q,R) = (P+\bar{o})(P+R)$ 7M									
E,										
b)	 Realize the following expressions using NAND and NOR logic separately Y = PQ' + QS + Q'RS' 7M 									
	OR									
4. a										
	following Boolean function using Tabulation method.									
	$Y(A, B, C, D) = \sum (0, 1, 2, 3, 5, 7, 8, 9, 11, 14).$ 7M									
b)	For the following function using K-map, Find minimal sum of products									
	expression $T(W, X, Y, Z) = \sum (1, 2, 3, 5, 13) + d(6, 7, 8, 9, 11, 15)$. 7M									
	UNIT–III									
5. a)	Derive the necessary equations and then draw the circuit for the full adder									

- Derive the necessary equations and then draw the circuit for the full adder circuit with two half adders and OR gate. 7M
 - b) With neat sketch and function table, explain the 8:1 multiplexer. 7M

6. a) Design a BCD-to Gray code converter using

(i) 8:1 multiplexers (ii) dual 4 : 1 multiplexers and some gates.

b) For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.

Ι	nput	s		Out	put	
х	у	\mathbf{Z}	A	В	\mathbf{C}	D
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
		l	JNIT-	-IV		

5M

7M

14M

9M

- 7. a) What is race around condition? Explain how it can be eliminated in Jk masterslave flip-flop explain clearly.
 - b) Design a T flip-flop using JK flip-flop. Use k-maps for the design. 7M

OR

8. Design a mod-6 synchronous counter using JK flip-flops.

UNIT-V

What are the conditions for the two machines are to be equivalent? For the 9. machine given below, find the equivalence partition and a corresponding reduced machine in standard form:

\mathbf{PS}	NS	S,Z
	X=0	X=1
А	F,0	B,1
В	$^{\rm G,0}$	A,1
\mathbf{C}	В,0	C,1
D	$^{\rm C,0}$	B,1
E	D,0	A,1
F	$^{\mathrm{E,1}}$	F,1
G	E,1	G,1

14M

4M

OR

- 10. a) What are the capabilities and limitations of an FSM
 - b) Draw a ASM chart for a 2-bit binary counter having one enable line E such that: E = 1(counting enabled) 10M
 - E = 0(counting disabled)

Hall Ticket N	imber :)			
Code: 4G343					<u></u>		I	<u> </u>]			<u>]</u>		R-14	
ll B.Tech	. II Sem	neste	ər S	upp	lem	ent	ary	Exai	min	atio	ns E	Dece	mber 2017	
	/ -	- L			-			Julic				·		
Max. Marks:	•	lectr	onic	cs ar	na C	.omr	nun	ICati	one	ngir	ieeri	ing)	Time: 3 Ho	Urs
Answer a	l five uni	its by	chc	osing	g on	•	estio ****	n froi	n eo	ach u	unit (5 x 14	4 = 70 Marks)	
							UNI	T–I						
,													to a depth of	
	-												s a result of What is the	
	dulation													5M
,				•		kplair	n the	prine	ciple	of e	nvelo	ope de	etection of an	714
	plitude m an amplit					nal if	the t	total i	00.004	ər is i	SOO \	M and	I the power in	7M
,	rier is 40				•						000			2M
							OF	ł						
,	•				• • • •								5cos 2200 t.	45.4
	ermine r					.,		_						4M
													lulated by a h of 50%.	
i		e dow						-					1010070.	
ii		ulate		-										
iii					•			•				al pow	er.	
iv		v the :	•											8M
c) Do	es the sig	gnal :	x(t) =	=sinc	$f_0(t)$	IS D			d or	time	limit	ed? E	xplain.	2M
3. a) Ex	lain the	relati	onst	nin he	otwo	n Fl	UNI [®]							4M
,				•						n an	FM	siana	I? Practically	
hov	v many :	sideb	and	s are	e cor	nside	red a	and v	vhy?	' Wh	at is	the c	orresponding	
		•						•	•	•			from 10 kHz Indwidth of B	
Hz		mat	Παρ	pono				, and the	(,	Joann	• …			8M
,							•			•	arrie	r swin	g of 100 KHz	~ •
and	I the mod	dulati	on s	ignal	nas	trequ	iency OF		KH	Ζ?				2M
4. a) Ex	lain with	nece	essa	rv bla	ock d	liaora			mod	ulatio	on of	FM si	anal.	7M
	plain Arm			-		-						01	<u></u>	7M
			-			5								

UNIT-III

5.	a)	What is white noise? Draw the power spectral density of white noise.	4M
	b)	If the maximum frequency deviation of an FM signal is doubled without changing the frequency of the sinusoidal modulating frequency, what	
		happens to the output SNR?	4M
	c)	Derive an expression for output SNR for DSB-SC system.	6M
		OR	
6.	a)	What is the role of pre-emphasis and de-emphasis filter in FM broadcasting.	8M
	b)	Write short note on threshold in frequency modulation.	6M
		UNIT–IV	
7.	a)	What is a tuned radio frequency TRF receiver	7M
	b)	Draw the block schematics of super heterodyne receiver and explain the operation of each block.	7M
		OR	
8.	a)	What do you mean by heterodyne?	2M
	b)	Write short notes on	
	,	i. AGC	
		ii. frequency stability in FM Transmitter	
		iii. Frequency changing and tracking	12M
		UNIT-V	
9.	a)	Explain how multiple channels are multiplexed using TDM. How does it is different from FDM.	8M
	b)	Write short notes on Single polarity PAM and double polarity PAM	6M
		OR	
10.	a)	Two signals band limited to 3 and 5 kHz are to be time division multiplexed.	
	,	Find the maximum permissible interval between two successive samples.	4M
	b)	Describe with methods of generation of PWM and PPM signal.	10M

На	ll Tio	cket Number :	
Co	de: 4	4G245	
		B.Tech. II Semester Supplementary Examinations December 2017	
		Electrical Technology	
٨٨	av	(Electronics and Communication Engineering) Marks: 70 Time: 3 Hours	
1 • 1		swer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
		******* UNIT–I	
1.	a)	Recall the necessary expressions for Y parameters in terms of Z parameters.	7M
	b)	Two 2 port networks Y1 and Y2 are connected in parallel find the equivalent Y parameters	7M
		OR	
2.	a)	The Z parameters are $Z_{11}=4$ $Z_{12}=6.Z_{21}=3.Z_{22}=8$, find A.B.C ,D parameters.	7M
	b)	Recall the condition of reciprocity and symmetry for y parameters.	7M
3.	a)	UNIT-II A series R-C circuit has R=20 and C=4F .A dc voltage of V= 120V is applied at t=0.	
•		c	10M
	b)	Recall the time constant of series R-L circuit and give its significance.	4M
		OR	
4.	a)	An uncharged 80µF capacitor is connected in series with a 1k resistor and switch across a 110V supply. Determine the time constant of the circuit and the initial value	
		of current flowing. Determine also the value of current flowing after (i) 40ms and	
		(ii) 80ms.	7M
	b)	A series RLC circuit is closed at t=0.The value of R =8 , L=5H and C= 8μ F.The	
		circuit is excited by V-80Vsource .Find i(0+),di(0+)/dt, and d ² i(0+)/dt ²	7M
5.	a)	Write short note on stop band filters	7M
	b)	Design a constant-k high-pass filter to match with a line having characteristic impedance of 600 and to pass frequency above 5kHz.	7M
0	-)	OR	
6.	a) L	What is an attenuator? Derive design equation of bridge T type attenuator.	7M
	b)	Design T type attenuator to provide attenuation of 10dB. Taking characteristic impedance of 150 .	7M
		UNIT-IV	
7.	a)	Describe with neat sketch the construction of dc machine.	7M
	b)	The armature of 4 pole dc motor has a lap connected winding accommodating in 60	
		slots, each containing 20 conductors .If the useful flux per pole is 25m.Wb. Calculate the torque developed when the armature current is 60A.	7M
		OR	
8.	a)	Derive torque equation of dc motor?	7M
	b)	A 4-pole, lap wound, DC generator has a useful flux of 0.07 wb per pole. Calculate	
		the generated emf, when it is rotated at a speed of 900 rpm with the help of prime mover. Armature consists of 440 numbers of conductors. Also calculate the	
		generated emf. If lap wound armature is replaced by wave wound armature.	7M
		UNIT–V	
9.	a)	Derive emf equation of single phase transformer.	5M
	b)	The OC and SC tests on a 10 kVA , 125/250 V ,50Hz. 1 phase transformer gave the following results: OC test: 125 V. 0.7A, 50 W(on LV side); SC test : 15 V, 32 A, 100	
		W(on HV side) .Calculate full load efficiency at 0.86 leading and half load efficiency	
		at 0.8 laggging.	4M
10.	a)	OR Explain the operation of capacitor start and run motor.	7M
	b)	Explain the operation of stepper motor.	7M
