ŀ	-all	Ticket Number :	
С	ode	: 5GC41 R-15	
	II	B.Tech. II Semester Supplementary Examinations December 2017	
		Complex Variables and Special Functions	
N	Max	(Common to EEE & ECE) . Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
		******** UNIT–I	
1.	a)	Express the integrals $\int_{0}^{\infty} x e^{-x^8} dx \cdot \int_{0}^{\infty} x^2 e^{-x^4} dx$ in terms of Gamma functions.	8M
	b)	Find the principal value of $\sqrt{2i}$.	
	- /		6M
2.	a)	Show that $\int_{0}^{\frac{T}{2}} \frac{d_{\pi}}{\sqrt{\sin \pi}} \cdot \int_{0}^{\frac{T}{2}} \sqrt{\sin \pi} d_{\pi} = f$	7M
	b)	Find the real and imaginary parts of $\cot z$	7M
		UNIT–II	
3.	a)	State and prove Cauchy-Riemann equations in polar form and hence deduce that	
		$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2} = 0$	
			7M
	b)	Find an analytic function, whose real part is $\frac{\sin 2x}{(\cosh 2y - \cos 2x)}$	714
			7M
		OR	
4.		Show that for $f(z) = \frac{2xy(x+iy)}{x^2 + y^2}$ if $z \neq 0$ the C-R equations are satisfied at origin but	
		= 0 if $z = 0$	
		derivatives of $f(z)$ at origin does not exist.	14M
		UNIT–III	
5.	a)	Evaluate, using Cauchy's integral formula $\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$	7M
	b)	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point $z = -i$	7M
		OR	
6.	a)	Evaluate $\int z^2 dz$ along the straight line from $z = 0$ to $z = 2 + i$	

- 6. a) Evaluate $\int_{c} z^2 dz$ along the straight line from z = 0 to z = 2 + i
 - b) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for 0 < |z+1| < 2. 7M

7M

Code: 4GC41

7M

7M

7M

7M

UNIT–IV

- 7. a) Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2
 - b) Use Rouche's theorem to solve $p(z) = z^9 2z^6 + z^2 8z 2$, C: |z| = 1 7M

OR

8. a) Using Residue theorem, evaluate $\int_{c} \frac{3z^2 + 2}{(z-1)(z^2+9)} dz$, where C is the circle |z-2| = 2.

b) State and prove Argument principle.

UNIT–V

- 9. a) Discuss the transformation $w = \sin z$.
 - b) Find the bilinear transformation which maps the points $z = 0, 1, \infty$ onto w = -1, -i, 1. 7M

OR

- 10. a) Show that $w = \frac{i-z}{i+z}$ maps the real axis of z-plane into the circle |w| = 1 and the half plane y > 0 into the interior of the unit circle |w| = 1 in the w-plane.
 - b) Find the bilinear transformation which maps the points z = 1, i, -1 onto w = 2, i, -2 respectively. Find the fixed points of the transformation. 7M

Hall 7	Ficke	et Number :	
Code:	5G2	46 R-15	
	B.Te	ch. Il Semester Supplementary Examinations December 2017	
		Electrical Technology	
Max. Ar	-	(Electronics and Communication Engineering) ks: 70 Time: 3 Hour r all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	ſS
		UNIT–I	
1.	a)	Discuss relation of z parameters and ABCD parameters	7M
	b)	Appraise the importance of cascaded connection of two port networks.	7M
		OR	
2.	a)	Deduce y parameters of the network shown.	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71\
	b)	When two 2 port networks N1 and N2 are connected in parallel, relate equivalent parameters of combined network in terms of y parameters of individual networks.	7№
		UNIT–II	
3.	a)	The series RLC circuit with R=10 , L=10mH and C= 10μ F is excited by 100 V. Evaluate the transient response current i(t) after 10 ms.	7N
	b)	State and derive final value theorem.	7N
		OR	
4.	a)	The input for voltage for series RC circuit is 180 V, with R= 18 and C=41.3 mH. Determine expression for current.	7N
	b)	In the given network ,switch k is closed at t=0 with zero current in inductor . Find the values of I, di/dt and $d^{2}i/dt^{2}$ at t-0+ if R=20 , L= 2 H and V=200V	
			71/

UNIT-III

7M

7M

- 5. a) Compare low pass, band pass and high pass filters. 7M
 - b) Elaborate T type and type symmetrical attenuators. 7M

OR

- 6. a) Classify filters based on frequency and write briefly about each. 7M
 - b) Elaborate attenuators in general.

			1 0
		UNIT–IV	
7.	a)	Explain the process of commutation	7M
	b)	Describe with neat sketch the construction of dc machine.	7M
		OR	
8.	a)	What is the principle of DC generator and deduce the EMF equation of DC	
		generator.	7M
	b)	Illustrate and explain different characteristics of DC generator.	7M
		UNIT-V	
9.	a)	What is the principle of transformer and construct the vector diagram under no	
		load.	7M
	b)	Describe the principle of stepper motor and illustrate its characteristics	7M
		OR	
10.	a)	Justify the statement " single phase motor is not self-starting	7M
	b)	Define regulation of transformer and summarize the OC and SC test of transformer.	7M

	Н	all Ticket Number :														
	С	ode: 5G344					_[1		1	_		1		R-15	
		ll B.Tech. II Sen						-						mbe	r 2017	
		(5		Id T ronic		-										
	Ν	ן ∟ Nax. Marks: 70		TOTIC	-2 UI	iu c	.0111	non	icuii		ngii		ng j	Tim	ne: 3 Hou	Jrs
		Answer all five un	its b	y chc	posin	g on	e qu	estic	on fro	me	ach	unit	(5x14	+ = 70	Marks)	
					ſ	U	^ I—TIV	**								
	a)	State and prove Ga	uss l	aw ar	nd ex			licat	ions	of ga	uss	law.				
	b)	Derive an expressio				-				-			rostatio	c field.		
								OR			-					
	a)	Define divergence, g	radie	ent, cu	url in	sphe	rical	0-01	dinat	e sys	stem	with	mather	natica	l expressi	on
	b)	State and proof dive	rger	ice th	eore	m.										
						UN	IIT-II									
3	a)	Derive an expressio	n for	serie	es an	d pa	rallel	plat	e cap	acito	or.					
	b)	Derive an expression	for ca	apacit	ance	of co	ncen	tric s	phere	s an	d for	capa	citance	of co-a	axial cable	
								OR								
ł	a)	Discuss the properti	es o	f diele	ectric	: mat	erials	6.								
	b)	Derive the boundary								ngen	tial o	comp	onents	s of el	ectric field	d at
		the interface of two	medi	ia wit	h diff				CS.							
_	-)	Darius Caranal field			f 4		IIT–II		4 n ² -				:. <i>t</i> :			112-2
5	a)	Derive General field equations	i rela	ation	tor ti	me \	/aryır	ig ei	ectric	; and	a ma	gnet		s usin	g maxwe	II'S
	b)	Write a technical no	te or	ı "Far	adav	/s lav	vofe	elect	roma	anet	ic ind	luctio	วท"			
	0)			i i ai	uuuy			OR	oma	gnot						
3	a)	Derive an expressio	n for	ener	av st	tored	l in a		inetic	field	ł.					
-	b)	Derive the Maxwell										rms.	Henc	e der	ive stand	ard
	,	wave equations.		•			0									
						UN	IT–I\	/								
7	a)	Derive the expression							ant, p	hase	e con	stan	t and ir	ntrinsi	c impeda	nce
		for a uniform plane			-								,		<i>.</i>	
	b)	Define and explain wave propagation w				•		•	pes	and	sıgn	ificar	nce of	polariz	zation in	ΕM
		wave propagation w	101 3	uppo	illing	cque		,. OR								
3	a)	Derive suitable relat	ions	for in	tear	al an	d noi		rms (of Po	ovnti	na th	eorem			
,	b)	A plane wave propa			-						-	-		•		
	0)	$E = 0.5 \sin (108 t)$	-	-	-						•			Wave	impeda	nce
		(iii) Wave velocity (iv							()			U	()		•	
						UN	IIT–V	,								
9	a)	Derive the Telegrap	hic e	quati	ons	of tra	nsmi	ssio	n line	s.						
	b)	Explain the characte	eristio	cs of	disto	rtion	less	tran	smiss	sion	line a	and t	elepho	ne ca	ole.	
								OR								
•	a)	Explain the principle						ng us	sing S	Single	e stu	b tur	ner and	l doub	le stub tu	ner
		with diagrams. Diffe														
	b)	Derive the input imp							-	hort	ed se	ectio	n of 75	ohm	transmiss	sion
		line, $I = /4$, find the i	nput	mpe	suan	le as	รงแบ	шy	= 0.							

F	lall 7	Ticket Number :											
C	Code: 5G342												
	II	B.Tech. II Semester Supplementary Examinations December 2017											
		Pulse and Digital Circuits											
I	Мах	(Electronics and Communication Engineering) Marks: 70 Time: 3 Hours											
	A	nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
		UNIT–I											
1.	a)	A 10HZ symmetrical square wave whose peak-to-peak amplitude is 2V is impressed upon a high pass RC circuit whose lower 3 dB frequency is 5HZ. Calculate and sketch the output waveform. In particular, what is peak-to-peak output amplitude?	-										
	b)	Explain how Low Pass RC network acts as ringing circuit?											
		OR											
2.	a)	A square wave whose peak-to-peak value is 1V extends $\pm 0.5V$ with respect to ground. The half period is 0.1sec, this voltage impressed upon an RC differentiating circuit whose time constant is 0.2sec. Determine the maximum and minimum values	-										
		of the output voltages in the steady state.											
	b)	What is an attenuator? Explain the under and over Compensation in attenuator											
3.	a)	UNIT–II Define comparator and explain some applications of voltage comparators?											
0.	с, b)	For the network shown below, draw the output wave for the first three cycles, labeling											
)	all voltage levels and time constants. For 'D' $R_f=100$, $R_0=$,V =0V.											
		Vs 1											
		$10V$ $R_{S} = 5K\Omega$ $C = 0.5\mu F$ $+$ V_{C} $R = 15K\Omega$ D V_{0} $-$											
		T = 0.2 m sec											
		OR											
4.	a)	Explain the two level transistor clipper circuit Derive the equation for input voltage swing.											
	b)	Write a short note on diode switching times.	-										
		UNIT–III											
5.	a)	Design an Astable multivibrator for an output amplitude of 15V and square wave											

b) Explain about unsymmetrical triggering of Bi-stable multivibrator

frequency of 500HZ. Assume $h_{fe min}$ =50, Ic(sat)=5mA and V_{CE}(sat)=0V.

OR

- 6. a) Explain how an schmitt trigger can be used as a squaring circuit 7M
 - b) What do you understand by hysteresis? What is Hysteresis voltage? Explain how hysteresis can be eliminated in a schmitt trigger
 7M

7M

7M

		UNIT–IV	
7.	a)	Explain about the transistor boot strap time-base generation.	7M
	b)	Explain about the transistor Miller time- base generator.	7M
		OR	
8.	a)	Classify the different methods of generating a time base waveform? Explain them briefly.	7M
	b)	Explain the simple current sweep circuit.	7M
		UNIT-V	
9.	a)	Draw the circuit diagram of the uni directional diode gate with more than two inputs	
		and explain its operation.	5M
	b)	How do you overcome the loading effect of signal sources on control voltage?	4M
	c)	Draw the circuit diagram of a Sampling Gates with more than one control voltage and	
		explain its working.	5M
		OR	
10.	a)	Explain the positive logic AND gate and Negative logic AND gate circuit using Diode logic.	7M
	b)	Classify and compare various logic families in detail.	7M

ſ	Idli								
С	ode	e: 5G341 R-15							
		B.Tech. II Semester Supplementary Examinations December 2017							
		Random Variables and Random Processes							
		(Electronics and Communication Engineering)							
	-	. Marks: 70 ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)							
	115 *								
		UNIT–I							
1.	a)	Define conditional probability and obtain P(A/B) if							
		(i) A<=B (ii) B<=A.							
	b)	Prove that two events A and B cannot be both mutually exclusive and statistically independent at the same time.							
	c)	If two dice are rolled simultaneously what is the probability for the sum on the faces showing up is $<=10$.							
		OR							
2.	a)	Define cumulative distribution function & state its properties.							
	b)	Two cards are drawn from a 52 card deck and the first is not replaced , find the probability for							
		 Given that the first card is queen, the second is also a queen. Given that the first card is queen, the second is a 7. 							
		UNIT-II							
3.	a)	The probability density function of a random variable is given by ,							
•	.,	$f_{x_{i}}(x) = 35 \exp(-7x), x > 0$							
		find (i) $E[X]$ (ii) $E[4X^2+3X]$ (iii) $var(x)$							
	b)	The probability density function of a random variable is given by ,							
		$f_{x,x}(x) = \{kx, 0 < x < 1\}$							
		find (i) k (ii) F _X ^(X)							
		OR							
4.	a)	State chebyshev's inequality and explain its significance.							
	b)	Is the gaussian density function with power density function a valid power density function?							
		$f_{x,x}(x) = [1/\{(2), 1/2\}] \exp[-\{(x-m)2\}/(2, 2)]$							
		Find the mean and variance of the above gaussian power density function.							
5.	\sim	UNIT–III Find the value of 'b' such that the given power density function(joint) is a valid power density							
5.	a)	function, $f_{x,y}(x,y)=bxy^2exp(-2xy)u(x-2)u(y-1)$							
	b)	Two statistically independent random variables X and Y have respective power density							
	,	function $f_{x,x}(x) = 5 u(x) \exp(-5x) f_{y}(y) = 2 u(y) \exp(-5y)$							
		Find the power density function of the sum W=X+Y							
		OR							
6.	a)	State the central limit theorem							
	b)	The joint power density function of two random variables X and Y is ,							
		$f_{x,y}(x,y)=5x^2y/16,0< y< x< 2$							
	-	are X and Y statistically independent.							
	c)	Define the joint characteristic function and state its properties.							

Hall Ticket Number :

UNIT–IV

- 7. a) Define
 - (i) Ergodic Random process.
 - (ii) Mean Ergodic Random process.
 - b) Define cross covariance function for two random process X(t) and Y(t) and when are two random process said to be uncorrelated.
 - c) Statistically independent zero mean random process X(t) and Y(t) have auto correlation function R_{XX}.^(s)=e^{-|s|}, R_{yy}^(s)= cos(2 s)
 Find auto correlation function of W(t)= X(t)+ Y(t).

OR

- 8. a) The random process $X(t)=A^2\cos^2(W_Ct+)$ where and are constants and is a random variable uniformly distributed in the interval (0 2π) is X(t) wide sense stationary.
 - b) Consider a random process X(t)=Ycos(W_Ct) ,t>0) where W is a constant and Y is a random variable uniformly distributed in the interval (0 1). Find the mean and autocorrelation of x(t).
 - c) Define poisson process.

UNIT–V

- 9. a) The autocorrelation of a random process X(t) which is WSS is given by R_{XX} .^(t) = {1-|t|, |t| 1,} find the power spectral density.
 - b) Define cross power spectral density &state its properties.

OR

- 10. a) The power spectral density a random process X(t) $S_{xx}^{(w)}=1-\frac{W}{4\pi}$, |W|=1, Find the average power in the process.
 - b) Derive the relationship between cross power spectral density & cross correlation function.

Hall Tick]			
Code: 50	Code: 5G343													
II B.Tech. II Semester Supplementary Examinations December 2017														
	Analog Communication													
(Electronics and Communication Engineering) Max. Marks: 70 Time: 3 Hours											Urs			
Ansv	ver all five uni	its by	chc	osing	g one		estio *****	n fro	m eo	ach i	unit (5 x 14	4 = 70 Marks)	
							UNI	T–I						
1. a)													to a depth of	
	-												s a result of What is the	
	modulation									Sinc	, ,,			5M
b)				•		kplaii	n the	prin	ciple	of e	nvelo	ope de	etection of an	
	amplitude m													7M
c)	In an amplit carrier is 40				•				•	er is (600 \	W and	I the power in	2M
		 ,	wha		10 111	ouun	OF							2111
2. a)	An AM sign	al is d	defin	ed b	y x(t))=5co	os 10	000	t + 2	0cos	200	0 t +	5cos 2200 t.	
	Determine r	nodu	lating	g sigi	nal m	n(t), t	he c	arrier	and	the r	modu	ulation	index.	4M
b)	A sinusoida	al ca	arrier	c(t) = 10)0co	s (2f	$10^{5} t$) is	ampl	itude	moc	lulated by a	
	sinusoidal v	oltag	e <i>m</i> ((t)=5	0cos	(2f	$10^{3} t$	up to	o a n	nodu	latior	n deptl	h of 50%.	
		e dow		•										
		ulate	•				•	•				a. 1 pow	≏r	
		v the			•			-						8M
c)												ed? E	xplain.	2M
							UNI	T—II						
3. a)	Explain the	relati	onsh	ip be	etwee	en Fl	M an	d PM	.					4M
b)				``								0	I? Practically	
	•								•				orresponding from 10 kHz	
	to 20 kHz,	•						•	•	•			indwidth of B	
	Hz).													8M
c)	and the mo						•			•	arrie	r swin	g of 100 KHz	2M
				9.5		-1	OF							
4. a)	Explain with	nece	essa	ry blo	ock d	liagra	am th	ie de	mod	ulatic	on of	FM si	gnal.	7M
b)	Explain Arm	nstron	ng m	ethoo	d of F	FM g	enera	ation						7M

UNIT–III

5.	a)	What is white noise? Draw the power spectral density of white noise.	4M
	b)	If the maximum frequency deviation of an FM signal is doubled without changing the frequency of the sinusoidal modulating frequency, what	
		happens to the output SNR?	4M
	c)	Derive an expression for output SNR for DSB-SC system.	6M
		OR	
6.	a)	What is the role of pre-emphasis and de-emphasis filter in FM broadcasting.	8M
	b)	Write short note on threshold in frequency modulation.	6M
		UNIT–IV	
7.	a)	What is a tuned radio frequency TRF receiver	7M
	b)	Draw the block schematics of super heterodyne receiver and explain the operation of each block.	7M
		OR	
8.	a)	What do you mean by heterodyne?	2M
	b)	Write short notes on	
		i. AGC	
		ii. frequency stability in FM Transmitter	
		iii. Frequency changing and tracking	12M
		UNIT-V	
9.	a)	Explain how multiple channels are multiplexed using TDM. How does it is different from FDM.	8M
	b)	Write short notes on Single polarity PAM and double polarity PAM	6M
		OR	
10.	a)	Two signals band limited to 3 and 5 kHz are to be time division multiplexed.	
	,	Find the maximum permissible interval between two successive samples.	4M
	b)	Describe with methods of generation of PWM and PPM signal.	10M
